满分5 > 初中数学试题 >

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴...

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=3.
(1)在AB边上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求点D,E的坐标;
(2)若过点D,E的抛物线与x轴相交于点F(-5,0),求抛物线的解析式和对称轴方程;
(3)若(2)中的抛物线与y轴交于点H,在抛物线上是否存在点P,使△PFH的内心在坐标轴上?若存在,求出点P的坐标,若不存在,请说明理由.
(4)若(2)中的抛物线与y轴相交于点H,点Q在线段OD上移动,作直线HQ,当点Q移动到什么位置时,O,D两点到直线HQ的距离之和最大?请直接写出此时点Q的坐标及直线HQ的解析式.
manfen5.com 满分网
(1)本题可根据折叠的性质来求解.根据折叠的性质可得出OE=OA,可在直角三角形OCE中,用勾股定理求出CE的长,也就求出了E点的坐标.在直角三角形DBE中,还是根据折叠的性质,DA=DE,DB=3-DE,而BE可根据OA和CE的长求出,因此根据勾股定理即可求出DE即AD的长,也就得出了D点的坐标. (2)根据D、E、F的坐标,用待定系数法即可求出抛物线的解析式,进而可求出其对称轴的方程. (3)当内心在y轴上时,根据三角形内心的性质可知:y轴正好是∠PHF的角平分线,那么∠PHO=∠FHO=45°,设PH与x轴的交点为M,易知三角形OMH为等腰直角三角形,由此可求出M的坐标,进而可求出直线PH的解析式,联立抛物线的解析式即可求出P点的坐标. 当内心在x轴上时,解法同上. (4)根据“直线外一点与直线上各点连接的所有线段中,垂线段最短”可知,当直线HQ⊥OD时,O,D两点到直线HQ的距离之和最大,此时点Q为垂足.利用三角形相似可求得点Q的坐标. 【解析】 (1)依题意,OE=OA=5, 在Rt△OCE中,CE2=OE2-OC2=52-32=42, ∴CE=4. 设点D的坐标为(5,y), 则AD=DE=y,BD=3-y,BE=5-4=1. 在Rt△BED中,ED2=EB2+BD2, ∴y2=12+(3-y)2, 解得y=, ∴点D,E的坐标分别为(5,),(4,3). (2)设抛物线的解析式为y=ax2+bx+c, ∵抛物线过点D(5,),E(4,3),F(-5,0), ∴, 解得, ∴抛物线的解析式为y=-x2+x+5. 对称轴的方程为. ∴对称轴的方程为x=. (3)存在这样的P点,使△PFH的内心在坐标轴上. ①若△PFH的内心在y轴上,设直线PH与x轴相交于点M, ∵∠FHO=∠MHO,HO⊥FM, ∴FO=MO, ∴点M的坐标为(5,0). ∴直线PH的解析式为y=-x+5. 解方程组, 得,. ∴点P的坐标为(7,-2). ②若△PFH的内心在x轴上,设直线PF与y轴相交于点N, ∵∠HFO=∠NFO,FO⊥HN, ∴HO=NO, ∴点N的坐标为(0,-5), ∴直线FN的解析式为y=-x-5. 解方程组, 得, . ∴点P的坐标为(12,-17). 综合①②可知点P的坐标为(7,-2)或(12,-17). (4)(附加题)点Q的坐标为(,), 直线HQ的解析式为y=-3x+5.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD是菱形,点D的坐标是(0,manfen5.com 满分网),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A、B两点.
(1)求A、B、C三点的坐标;
(2)求过A、B、C三点的抛物线的解析式;
(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位.

manfen5.com 满分网 查看答案
如图1,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高,抛物线y=ax2+2x与直线y=manfen5.com 满分网x交于点O,C,点C的横坐标为6,点P在x轴的正半轴上,过点P作PE∥y轴.交射线OA于点E.设点P的横坐标为m,以A,B,D,E为顶点的四边形的面积为S.
(1)求OA所在直线的解析式.
(2)求a的值.
(3)当m≠3时,求S与m的函数关系式.
(4)如图2,设直线PE交射线OC于点R,交抛物线于点Q,以RQ为一边,在RQ的右侧作矩形RQMN,其中RN=manfen5.com 满分网.直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.
manfen5.com 满分网
查看答案
如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=manfen5.com 满分网cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒manfen5.com 满分网cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动、设运动时间为t秒.
(1)用t的式子表示△OPQ的面积S;
(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;
(3)当△OPQ与△PAB和△QPB相似时,抛物线y=manfen5.com 满分网x2+bx+c经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.

manfen5.com 满分网 查看答案
已知:二次函数y=ax2+bx-2的图象经过点(1,0),一次函数图象经过原点和点(1,-b),其中a>b>0且a、b为实数.
(1)求一次函数的表达式(用含b的式子表示);
(2)试说明:这两个函数的图象交于不同的两点;
(3)设(2)中的两个交点的横坐标分别为x1、x2,求|x1-x2|的范围.
查看答案
如图,已知抛物线y=manfen5.com 满分网x2+bx+c与x轴交于点A(-4,0)和B(1,0)两点,与y轴交于C点.
(1)求此抛物线的解析式;
(2)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;
(3)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.