满分5 > 初中数学试题 >

如图,在平面直角坐标系中,正方形OABC的边长是2.O为坐标原点,点A在x的正半...

manfen5.com 满分网如图,在平面直角坐标系中,正方形OABC的边长是2.O为坐标原点,点A在x的正半轴上,点C在y的正半轴上.一条抛物线经过A点,顶点D是OC的中点.
(1)求抛物线的表达式;
(2)正方形OABC的对角线OB与抛物线交于E点,线段FG过点E与x轴垂直,分别交x轴和线段BC于F,G点,试比较线段OE与EG的长度;
(3)点H是抛物线上在正方形内部的任意一点,线段IJ过点H与x轴垂直,分别交x轴和线段BC于I、J点,点K在y轴的正半轴上,且OK=OH,请证明△OHI≌△JKC.
(1)解本题时可先设出二次函数的方程,然后根据所给的条件可得出抛物线上的两点,代入函数解析式计算即可. (2)本题根据观察可知OB的表达式为:y=x,由此可设点E的坐标为(m,m),再根据点E在抛物线上,将E点的坐标代入抛物线解析式,化简即可得出E点的坐标.根据两点之间的距离公式即可得出OE的长,再根据EG=GF-EF即可得出EG的长,比较即可得出答案. (3)本题可先设出H点的坐标,由H点在抛物线上列出关于H点坐标的方程,再根据勾股定理OH2=OI2+HI2得出OH关于H点坐标的式子,根据OK=OH可得出CK的长,证明CK=IH,最后根据三角形相似定理HL即可证出两三角形全等. (1)【解析】 由题意,设抛物线的解析式为:y=ax2+b. 将点D的坐标(0,1),点A的坐标(2,0)代入, 得:a=-,b=1. 所求抛物线的解析式为y=-x2+1. (2)【解析】 由于点E在正方形的对角线OB上,又在抛物线上, 设点E的坐标为(m,m)(0<m<2), 则m=-m2+1. 解得m1=2-2,m2=-2-2(舍去). 所以OE=m=4-2. 所以EG=GF-EF=2-m=2-(2-2)=4-2. 所以OE=EG. (3)证明:设点H的坐标为(p,q)(0<p<2,0<q<2), 由于点H在抛物线y=-x2+1上, 所以q=-p2+1, 即p2=4-4q. 因为OH2=OI2+HI2=p2+q2=4-4q+q2=(2-q)2, 所以OH=2-q. 所以OK=OH=2-q. 所以CK=2-(2-q)=q=IH. 因为CJ=OI,∠OIH=∠JCK=90°, 所以△OHI≌△JKC.
复制答案
考点分析:
相关试题推荐
如图,抛物线y=manfen5.com 满分网x2+3与x轴交于点A,点B,与直线y=manfen5.com 满分网x+b相交于点B,点C,直线y=manfen5.com 满分网x+b与y轴交于点E.
(1)写出直线BC的解析式.
(2)求△ABC的面积.
(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?

manfen5.com 满分网 查看答案
如图,已知△ABC中,∠ACB=90°,以AB所在直线为x轴,过c点的直线为y轴建立平面直角坐标系.此时,A点坐标为(-1,0),B点坐标为(4,0)
(1)试求点C的坐标;
(2)若抛物线y=ax2+bx+c过△ABC的三个顶点,求抛物线的解析式;
(3)点D(1,m)在抛物线上,过点A的直线y=-x-1交(2)中的抛物线于点E,那么在x轴上点B的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE相似?若存在,求出P点坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=x2+bx+c的图象过A(0,1)、B(-1,0)两点,直线l:x=-2与抛物线相交于点C,抛物线上一点M从B点出发,沿抛物线向左侧运动.直线MA分别交对称轴和直线l于D、P两点.设直线PA为y=kx+m.用S表示以P、B、C、D为顶点的多边形的面积.
(1)求抛物线的解析式,并用k表示P、D两点的坐标;
(2)当0<k≤1时,求S与k之间的关系式;
(3)当k<0时,求S与k之间的关系式.是否存在k的值,使得以P、B、C、D为顶点的多边形为平行四边形?若存在,求此时k的值;若不存在,请说明理由;
(4)若规定k=0时,y=m是一条过点(0,m)且平行于x轴的直线.当k≤1时,请在下面给出的直角坐标系中画出S与k之间的函数图象.求S的最小值,并说明此时对应的以P、B、C、D为顶点的多边形的形状.
manfen5.com 满分网
查看答案
已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(2,0),C(0,-2),直线x=m(m>2)与x轴交于点D.
(1)求二次函数的解析式;
(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x+m2-3m+2与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.
(1)求点B的坐标;
(2)点P在线段OA上,从O点出发向点A运动,过P点作x轴的垂线,与直线OB交于点E.延长PE到点D.使得ED=PE.以PD为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动)j当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;k若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作x轴的垂线,与直线AB交于点F.延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动).若P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.