如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.
(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.
考点分析:
相关试题推荐
如图,已知抛物线y=
x
2-2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y轴于点C,连接O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.
(1)求直线l的函数解析式;
(2)求点D的坐标;
(3)抛物线上是否存在点Q,使得S
△DQC=S
△DPB?若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.
查看答案
如图,在平面直角坐标系中,正方形OABC的边长是2.O为坐标原点,点A在x的正半轴上,点C在y的正半轴上.一条抛物线经过A点,顶点D是OC的中点.
(1)求抛物线的表达式;
(2)正方形OABC的对角线OB与抛物线交于E点,线段FG过点E与x轴垂直,分别交x轴和线段BC于F,G点,试比较线段OE与EG的长度;
(3)点H是抛物线上在正方形内部的任意一点,线段IJ过点H与x轴垂直,分别交x轴和线段BC于I、J点,点K在y轴的正半轴上,且OK=OH,请证明△OHI≌△JKC.
查看答案
如图,抛物线y=
x
2+3与x轴交于点A,点B,与直线y=
x+b相交于点B,点C,直线y=
x+b与y轴交于点E.
(1)写出直线BC的解析式.
(2)求△ABC的面积.
(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?
查看答案
如图,已知△ABC中,∠ACB=90°,以AB所在直线为x轴,过c点的直线为y轴建立平面直角坐标系.此时,A点坐标为(-1,0),B点坐标为(4,0)
(1)试求点C的坐标;
(2)若抛物线y=ax
2+bx+c过△ABC的三个顶点,求抛物线的解析式;
(3)点D(1,m)在抛物线上,过点A的直线y=-x-1交(2)中的抛物线于点E,那么在x轴上点B的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE相似?若存在,求出P点坐标;若不存在,说明理由.
查看答案
已知抛物线y=x
2+bx+c的图象过A(0,1)、B(-1,0)两点,直线l:x=-2与抛物线相交于点C,抛物线上一点M从B点出发,沿抛物线向左侧运动.直线MA分别交对称轴和直线l于D、P两点.设直线PA为y=kx+m.用S表示以P、B、C、D为顶点的多边形的面积.
(1)求抛物线的解析式,并用k表示P、D两点的坐标;
(2)当0<k≤1时,求S与k之间的关系式;
(3)当k<0时,求S与k之间的关系式.是否存在k的值,使得以P、B、C、D为顶点的多边形为平行四边形?若存在,求此时k的值;若不存在,请说明理由;
(4)若规定k=0时,y=m是一条过点(0,m)且平行于x轴的直线.当k≤1时,请在下面给出的直角坐标系中画出S与k之间的函数图象.求S的最小值,并说明此时对应的以P、B、C、D为顶点的多边形的形状.
查看答案