满分5 > 初中数学试题 >

如图,已知正比例函数和反比例函数的图象都经过点A(3,3). (1)求正比例函数...

如图,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=manfen5.com 满分网S?若存在,求点E的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)设出正比例函数和反比例函数的解析式,用待定系数发解答; (2)因为B点为三个函数的交点,将B(6,m)代入已知函数y=,即可求得m的值;根据一次函数和正比例函数平行,可知二者比例系数相同,再用待定系数法求出b的值; (3)A、B坐标已求出,D点坐标可根据一次函数解析式求得; (4)画出图形,根据已知各点坐标,求出相应线段长.由于四边形不规则,故将其面积转化为矩形面积与三角形面积的差或几个三角形面积的和. 【解析】 (1)设正比例函数的解析式为y=k1x(k1≠0), 因为y=k1x的图象过点A(3,3), 所以3=3k1,解得k1=1. 这个正比例函数的解析式为y=x. 设反比例函数的解析式为y=(k2≠0), 因为y=的图象过点A(3,3), 所以3=, 解得k2=9. 这个反比例函数的解析式为y=.(2分) (2)因为点B(6,m)在y=的图象上, 所以m==, 则点B(6,).(3分) 设一次函数解析式为y=k3x+b(k3≠0), 因为y=k3x+b的图象是由y=x平移得到的, 所以k3=1,即y=x+b. 又因为y=x+b的图象过点B(6,), 所以=6+b, 解得b=-, ∴一次函数的解析式为y=x-. (3)因为y=x-的图象交y轴于点D, 所以D的坐标为(0,-). 设二次函数的解析式为y=ax2+bx+c(a≠0). 因为y=ax2+bx+c的图象过点A(3,3)、B(6,)、和D(0,-), 所以, 解得, 这个二次函数的解析式为y=-x2+4x-.(6分) (4)∵交x轴于点C, ∴点C的坐标是(,0), 如图所示,连接OE,CE,过点A作AF∥x轴,交y轴于点F,过点B作BH∥y轴,交AF于点H,过点D作DG∥x轴,交直线BH于点G,则S=×6-×6×6-××3-×3×3=45-18--=. 假设存在点E(x,y),使S1=S=. ∵四边形CDOE的顶点E只能在x轴上方, ∴y>0, ∴S1=S△OCD+S△OCE==. ∴, ∴.(7分) ∵E(x,y)在二次函数的图象上, ∴. 解得x=2或x=6. 当x=6时,点E(6,)与点B重合,这时CDOE不是四边形,故x=6舍去, ∴点E的坐标为(2,).(8分)
复制答案
考点分析:
相关试题推荐
如图,已知抛物线的顶点为M(5,6),且经过点C(-1,0).
(1)求抛物线的解析式;
(2)设抛物线与y轴交于点A,过A作AB∥x轴,交抛物线于另一点B,则抛物线上存在点P,使△ABP的面积等于△ABO的面积,请求出所有符合条件的点P的坐标;
(3)将抛物线向右平移,使抛物线经过点(5,0),请直接答出曲线段CM(抛物线图象的一部分,如图中的粗线所示)在平移过程中所扫过的面积.

manfen5.com 满分网 查看答案
如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
manfen5.com 满分网
查看答案
如图所示,已知实数m是方程x2-8x+16=0的一个实数根,抛物线y=manfen5.com 满分网x2+bx+c交x轴于点A(m,0)和点B,交y轴于点C(0,m).
(1)求这个抛物线的解析式;
(2)设点D为线段AB上的一个动点,过D作DE∥BC交AC于点E,又过D作DF∥AC交BC于点F,当四边形DECF的面积最大时,求点D的坐标;
(3)设△AOC的外接圆为⊙G,若M是⊙G的优弧ACO上的一个动点,连接AM、OM,问在这个抛物线位于y轴左侧的图象上是否存在点N,使得∠NOB=∠AMO?若存在,试求出点N的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知,如图1,过点E(0,-1)作平行于x轴的直线l,抛物线y=manfen5.com 满分网x2上的两点A、B的横坐标分别为-1和4,直线AB交y轴于点F,过点A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DF.
(1)求点A、B、F的坐标;
(2)求证:CF⊥DF;
(3)点P是抛物线y=manfen5.com 满分网x2对称轴右侧图象上的一动点,过点P作PQ⊥PO交x轴于点Q,是否存在点P使得△OPQ与△CDF相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,已知抛物线y=a(x-1)2+3manfen5.com 满分网(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?
(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.