满分5 > 初中数学试题 >

如图,直线y=x+b经过点B(-,2),且与x轴交于点A,将抛物线y=x2沿x轴...

如图,直线y=manfen5.com 满分网x+b经过点B(-manfen5.com 满分网,2),且与x轴交于点A,将抛物线y=manfen5.com 满分网x2沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.
(1)求∠BAO的度数;
(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;
(3)在抛物线y=manfen5.com 满分网x2平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.
manfen5.com 满分网
(1)因为点B(-,2)在直线y=x+b上,所以把B点坐标代入解析式即可求出未知数的值,进而求出其解析式.根据直线解析式可求出A点的坐标及直线与y轴交点的坐标,根据锐角三角函数的定义即可求出∠BAO的度数. (2)根据抛物线平移的性质可设出抛物线平移后的解析式,由抛物线上点的坐标特点求出E点坐标及对称轴直线,根据EF∥x轴可知E,F,两点关于对称轴直线对称,可求出F点的坐标,把此坐标代入(1)所求的直线解析式就可求出未知数的值,进而求出抛物线C的解析式. (3)根据特殊角求出D点的坐标表达式,将表达式代入(2)所求解析式,看能否计算出P点坐标,若能,则D点在抛物线C上.反之,不在抛物线上. 【解析】 (1)设直线与y轴交于点N, 将x=-,y=2代入y=x+b得b=3, ∴y=x+3, 当x=0时,y=3,当y=0时x=-3 ∴A(-3,0),N(0,3); ∴OA=3,ON=3, ∴tan∠BAO== ∴∠BAO=30°, (2)设抛物线C的解析式为y=(x-t)2,则P(t,0),E(0,t2), ∵EF∥x轴且F在抛物线C上,根据抛物线的对称性可知F(2t,t2), 把x=2t,y=t2代入y=x+3 得t+3=t2 解得t1=-,t2=3(1分) ∴抛物线C的解析式为y=(x+)2或y=(x-3)2; (3)假设点D落在抛物线C上, 不妨设此时抛物线顶点P(m,0),则抛物线C:y=(x-m)2,AP=3+m, 连接DP,作DM⊥x轴,垂足为M.由已知,得△PAB≌△DAB, 又∵∠BAO=30°, ∴△PAD为等边三角形, PM=AM=(3+m), ∴tan∠DAM==, ∴DM=(9+m), OM=PM-OP=(3+m)-t=(3-m), ∴M=[-(3-m),0], ∴D[-(3-m),(9+m)], ∵点D落在抛物线C上, ∴(9+m)=[-(3-m)-m2,即m2=27,m=±3; 当m=-3时,此时点P(-3,0),点P与点A重合,不能构成三角形,不符合题意,舍去. 当m=3时P为(3,0)此时可以构成△DAB, 所以点P为(3,0), ∴当点D落在抛物线C上,顶点P为(3,0).
复制答案
考点分析:
相关试题推荐
已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
(1)求该抛物线的解析式;
(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;
(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为manfen5.com 满分网

manfen5.com 满分网 查看答案
如图1,已知四边形OABC中的三个顶点坐标为O(0,0),A(0,n),C(m,0).动点P从点O出发依次沿线段OA,AB,BC向点C移动,设移动路程为z,△OPC的面积S随着z的变化而变化的图象如图2所示.m,n是常数,m>1,n>0.
(1)请你确定n的值和点B的坐标;
(2)当动点P是经过点O,C的抛物线y=ax2+bx+c的顶点,且在双曲线y=manfen5.com 满分网上时,求这时四边形OABC的面积.
manfen5.com 满分网
查看答案
如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E.
(1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部分)为s,s关于t的函数图象如图2所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
①求梯形上底AB的长及直角梯形OABC的面积,
②当2<t<4时,求S关于t的函数解析式;
(2)在第(1)题的条件下,当直线l向左或向右平移时(包括l与直线BC重合),在直线AB上是否存在点P,使△PDE为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
manfen5.com 满分网我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
查看答案
如图,点E(-4,0),以点E为圆心,2为半径的圆与x轴交于A、B两点,抛物线y=manfen5.com 满分网x2+bx+c过点A和点B,与y轴交于C点.
(1)求抛物线的解析式;
(2)求出点C的坐标,并画出抛物线的大致图象;
(3)点Q(m,manfen5.com 满分网)(m<0)在抛物线y=manfen5.com 满分网x2+bx+c的图象上,点P为此抛物线对称轴上的一个动点,求PQ+PB的最小值;
(4)CF是圆E的切线,点F是切点,在抛物线上是否存在一点M,使△COM的面积等于△COF的面积?若存在,请求出点M的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.