满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交...

如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.

manfen5.com 满分网
(1)x=O和x=4时,y的值相等,即可得到函数的对称轴是x=2,把x=2和x=3分别代入直线y=4x-16就可以求出抛物线上的两个点的坐标,并且其中一点是顶点,利用待定系数法,设出函数的顶点式一般形式,就可以求出函数的解析式; (2)根据待定系数法可以求出直线OM的解析式,设OQ的长为t,即P,Q的横坐标是t,把x=t代入直线OM的解析式,就可以求出P点的纵坐标,得到PQ的长,四边形PQCO的面积S=S△COQ+S△OPQ,很据三角形的面积公式就可以得到函数解析式; (3)从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,即S不断变大,显当然点P运动到点M时,S最值; (4)在直角△OPQ中,根据勾股定理就可以求出点P的坐标. 【解析】 (1)∵当x=0和x=4时,y的值相等, ∴c=16a+4b+c,(1分) ∴b=-4a, ∴x=-=-=2 将x=3代入y=4x-16,得y=-4, 将x=2代入y=4x-16,得y=-8.(2分) ∴设抛物线的解析式为y=a(x-2)2-8 将点(3,-4)代入,得-4=a(x-2)2-8, 解得a=4. ∴抛物线y=4(x-2)2-8,即y=4x2-16x+8.(3分) (2)设直线OM的解析式为y=kx,将点M(2,-8)代入,得k=-4, ∴y=-4x.(4分) 则点P(t,-4t),PQ=4t,而OC=8,OQ=t. S=S△COQ+S△OPQ=×8×t+×t×4t=2t2+4t(5分) t的取值范围为:0<t≤2(6分) (3)随着点P的运动,四边形PQCO的面积S有最大值. 从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大, 即S不断变大,显然当点P运动到点M时,S值最大(7分) 此时t=2时,点Q在线段AB的中点上(8分) 因而S=×2×8+×2×8=16. 当t=2时,OC=MQ=8,OC∥MQ, ∴四边形PQCO是平行四边形.(9分) (4)随着点P的运动,存在t=,能满足PO=OC(10分) 设点P(t,-4t),PQ=4T,OQ=t. 由勾股定理,得OP2=(4t)2+t2=17t2. ∵PO=OC, ∴17t2=82,t1=<2,t2=-(不合题意) ∴当t=时,PO=OC.(11分)
复制答案
考点分析:
相关试题推荐
如图:已知在等腰直角三角形ABC中,∠C=90°,AC=BC=2,将一个含30°的直角三角形DEF的最小内角所在的顶点D与直角三角形ABC的顶点C重合,当△DEF绕着点C旋转时,较长的直角边和斜边始终与线段BA交于G,H两点(G,H可以与B,A重合)
(1)如图(1),当∠BCF等于多少度时,△BCG≌△ACH?请给予证明;
(2)如图(2),设GH=x,阴影部分(两三角形重叠部分)面积为y,写出y与x的函数关系式;当x为何值时,y最大,并求出最大值.(结果保留根号)
manfen5.com 满分网
查看答案
一条抛物线y=x2+mx+n经过点(0,3)与(4,3).
(1)求这条抛物线的解析式,并写出它的顶点坐标;
(2)现有一半径为1,圆心P在抛物线上运动的动圆,当⊙P与坐标轴相切时,求圆心P的坐标;
(3)⊙P能与两坐标轴都相切吗?如果不能,试通过上下平移抛物线y=x2+mx+n,使⊙P与两坐标轴都相切.(要说明平移方法)

manfen5.com 满分网 查看答案
如图,抛物线y=manfen5.com 满分网x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.
[注:抛物线y=ax2+bx+c的顶点坐标为(-manfen5.com 满分网manfen5.com 满分网).].

manfen5.com 满分网 查看答案
如图,已知直线l1的解析式为y=3x+6,直线l1与x轴,y轴分别相交于A,B两点,直线l2经过B,C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动.点P,Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t<10).
(1)求直线l2的解析式;
(2)设△PCQ的面积为S,请求出S关于t的函数关系式;
(3)试探究:当t为何值时,△PCQ为等腰三角形?

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,点O为坐标原点,以点A(0,-3)为圆心,5为半径作圆A,交x轴于B,C两点,交y轴于点D,E两点.
(1)求点B,C,D的坐标;
(2)如果一个二次函数图象经过B,C,D三点,求这个二次函数解析式;
(3)P为x轴正半轴上的一点,过点P作与圆A相离并且与x轴垂直的直线,交上述二次函数图象于点F,当△CPF中一个内角的正切之为manfen5.com 满分网时,求点P的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.