满分5 > 初中数学试题 >

如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8...

如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

manfen5.com 满分网
(1)由抛物线过A、B、C三点可求出抛物线表达式; (2)假设存在,设出P点,解出直线CD的解析式,根据点P到CD的距离等于PO可解出P点坐标; (3)应分两种情况:抛物线向上或下平移,设出解析式,代入点求出平移的单位长度. 【解析】 (1)设抛物线解析式为y=a(x+2)(x-4). 把C(0,8)代入,得a=-1. ∴y=-x2+2x+8=-(x-1)2+9, 顶点D(1,9);(2分) (2)假设满足条件的点P存在.依题意设P(2,t). 由C(0,8),D(1,9)求得直线CD的解析式为y=x+8, 它与x轴的夹角为45°. 设OB的中垂线交CD于H,则H(2,10). 则PH=|10-t|,点P到CD的距离为. 又.(4分) ∴. 平方并整理得:t2+20t-92=0,解之得t=-10±8. ∴存在满足条件的点P,P的坐标为(2,-10±8).(6分) (3)由上求得E(-8,0),F(4,12). ①若抛物线向上平移,可设解析式为y=-x2+2x+8+m(m>0). 当x=-8时,y=-72+m. 当x=4时,y=m. ∴-72+m≤0或m≤12. ∴0<m≤72.(8分) ②若抛物线向下平移,可设解析式为y=-x2+2x+8-m(m>0). 由, 有-x2+x-m=0. ∴△=1+4m≥0, ∴m≥-. ∴向上最多可平移72个单位长,向下最多可平移个单位长.(10分)
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点O顺时针方向旋转90度,得矩形OA′B′C′矩形设直线BB’与x轴交于点M,与y轴交于点N,抛物线经过点C,M,N点.
解答下列问题:
(1)设直线BB′表示的函数解析式为y=mx+n,求m,n;
(2)求抛物线表示的二次函数的解析式;
(3)在抛物线上求出使S△PB‘C‘=S矩形OABC的所有点P的坐标.

manfen5.com 满分网 查看答案
已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A,D,B,E,点P为线段AB上一个动点(P与A,B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断manfen5.com 满分网是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE,BE相交于点F,G(F与A,E不重合,G与E,B不重合),请判断manfen5.com 满分网是否成立?若成立,请给出证明;若不成立,请说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac.
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在,说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;
(3)根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?

manfen5.com 满分网 查看答案
如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线y=x2+4x+3的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.

manfen5.com 满分网 查看答案
已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且OC=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.