满分5 > 初中数学试题 >

一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点...

manfen5.com 满分网一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.
(1)若m为常数,求抛物线的解析式;
(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点;
(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
(1)由题点是未知的,因为抛物线与x轴交于A(m-2,0),B(m+2,0),可以把抛物线设为两点式,根据AC⊥BC的关系解出C点坐标从而得到抛物线解析式; (2)用图象平移,m为小于零的常数,只需将抛物线向右平移|m|个单位,再向上平移2个单位就可以了; (3)假设存在,求出△BOD三个顶点坐标,则有两边相等,从而解出m. 【解析】 (1)设抛物线的解析式为:y=a(x-m+2)(x-m-2)=a(x-m)2-4a.(2分) ∵AC⊥BC,由抛物线的对称性可知:△ACB是等腰直角三角形,又AB=4, ∴C(m,-2)代入得a=. ∴解析式为:y=(x-m)2-2.(5分) (亦可求C点,设顶点式) (2)∵m为小于零的常数, ∴只需将抛物线向右平移|m|个单位,再向上平移2个单位,可以使抛物线y=(x-m)2-2顶点在坐标原点.(7分) (3)由(1)得D(0,m2-2),设存在实数m,使得△BOD等腰三角形. ∵△BOD为直角三角形, ∴只能OD=OB.(9分) m2-2=|m+2|,当m+2>0时,解得m=4或m=-2(舍). 当m+2<0时,解得m=0或m=-2(舍); ∵m=0时,D点坐标为(0,-2),在y轴的负半轴, ∴m=0舍去; m=2,D点坐标为(0,0),也不合题意舍去; 当m+2=0时,即m=-2时,B、O、D三点重合(不合题意,舍) 综上所述:存在实数m=4,使得△BOD为等腰三角形.(12分)
复制答案
考点分析:
相关试题推荐
如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.
(1)求抛物线的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.

manfen5.com 满分网 查看答案
如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

manfen5.com 满分网 查看答案
已知:如图,直线l:y=manfen5.com 满分网x+b,经过点M(0,manfen5.com 满分网),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),设x1=d(0<d<1).
(1)求b的值;
(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示);
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.
manfen5.com 满分网
查看答案
如图,已知直线y=manfen5.com 满分网x+1与y轴交于点A,与x轴交于点D,抛物线y=manfen5.com 满分网x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
(1)求该抛物线的解析式;
(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;
(3)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.

manfen5.com 满分网 查看答案
已知抛物线y=ax2-x+c经过点Q(-2,manfen5.com 满分网),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、manfen5.com 满分网B两点,如图.
(1)求抛物线的解析式;
(2)求A、B两点的坐标;
(3)设PB于y轴交于C点,求△ABC的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.