满分5 > 初中数学试题 >

如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴...

如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴,B(3,manfen5.com 满分网),现将纸片按如图折叠,AD,DE为折痕,∠OAD=30度.折叠后,点O落在点O1,点C落在线段AB点C1处,并且DO1与DC1在同一直线上.
(1)求折痕AD所在直线的解析式;
(2)求经过三点O,C1,C的抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,⊙P与两坐标轴都相切时,求⊙P半径R的值.

manfen5.com 满分网
(1)根据B点的坐标即可得出A点的坐标,也就知道了OA的长,可在直角三角形OAD中,根据OA的长和∠OAD的度数求出OD的长,即可得出D点的坐标,进而可用待定系数法求出直线AD的解析式. (2)本题的关键是求出C1的横坐标,可过C1作x轴的垂线,由于∠ADO=∠AOC1=60°,因此可得出∠C1DC=60°,因此可在构建的直角三角形中用BC的长和∠C1DC的度数来求出C1的坐标,进而可用待定系数法求出抛物线的解析式. (3)由于圆P与两坐标轴都相切,如果设P点的坐标为(x、y),则有|x|=|y|,进而可联立抛物线的解析式求出P点的坐标.也就得出了圆的半径的长. 【解析】 (1)由已知得 OA=,∠OAD=30度. ∴OD=OA•tan30°==1, ∴A(0,),D(1,0) 设直线AD的解析式为y=kx+b. 把A,D坐标代入上式得: , 解得:, 折痕AD所在的直线的解析式是y=-x+. (2)过C1作C1F⊥OC于点F, 由已知得∠ADO=∠ADO1=60°, ∴∠C1DC=60°. 又∵DC=3-1=2, ∴DC1=DC=2. ∴在Rt△C1DF中,C1F=DC1•sin∠C1DF=2×sin60°=. 则DF=DC1=1, ∴C1(2,),而已知C(3,0). 设经过三点O,C1,C的抛物线的解析式是y=ax2+bx+c,(a≠0). 把O,C1,C的坐标代入上式得:, 解得, ∴y=-x2+x为所求. (3)设圆心P(x,y),则当⊙P与两坐标轴都相切时,有y=±x. 由y=x,得-x2+x=x,解得x1=0(舍去),. 由y=-x,得-x2+x=-x解得x1=0(舍去),. ∴所求⊙P的半径R=3-或R=3+.
复制答案
考点分析:
相关试题推荐
如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,manfen5.com 满分网)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).

manfen5.com 满分网 查看答案
如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.
(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;
(3)在图2中,点G是x轴正半轴上一点0<OG<6,过G作EF垂直于x轴,分别交y1、y2的图象于点E、F.
①说出线段EF的长在图1中所表示的实际意义;
②当0<x<6时,求线段EF长的最大值.

manfen5.com 满分网 查看答案
如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式.
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax2+bx+c的对称轴为x=-manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,抛物线y=manfen5.com 满分网x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.
[注:抛物线y=ax2+bx+c的顶点坐标为(-manfen5.com 满分网manfen5.com 满分网).].

manfen5.com 满分网 查看答案
如图,已知直线l1的解析式为y=3x+6,直线l1与x轴,y轴分别相交于A,B两点,直线l2经过B,C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动.点P,Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t<10).
(1)求直线l2的解析式;
(2)设△PCQ的面积为S,请求出S关于t的函数关系式;
(3)试探究:当t为何值时,△PCQ为等腰三角形?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.