满分5 > 初中数学试题 >

已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分...

已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.

manfen5.com 满分网
(1)本题要分情况进行讨论:①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP中根据BP,BQ的表达式和∠B的度数进行求解即可. (2)本题可先用△ABC的面积-△PBQ的面积表示出四边形APQC的面积,即可得出y,t的函数关系式,然后另y等于三角形ABC面积的三分之二,可得出一个关于t的方程,如果方程无解则说明不存在这样的t值,如果方程有解,那么求出的t值就是题目所求的值. (3)可过P作PM⊥BC于M,先在直角三角形PQM中,用t表示出x,然后将x替换掉(2)中得出的y,t的函数关系式中t的值,即可得出y,x的函数关系式. 【解析】 (1)根据题意得AP=tcm,BQ=tcm, △ABC中,AB=BC=3cm,∠B=60°, ∴BP=(3-t)cm, △PBQ中,BP=3-t,BQ=t,若△PBQ是直角三角形,则 ∠BQP=90°或∠BPQ=90°, 当∠BQP=90°时,BQ=BP, 即t=(3-t),t=1(秒), 当∠BPQ=90°时,BP=BQ, 3-t=t,t=2(秒), 答:当t=1秒或t=2秒时,△PBQ是直角三角形. (2)过P作PM⊥BC于M, △BPM中,sin∠B=, ∴PM=PB•sin∠B=(3-t), ∴S△PBQ=BQ•PM=•t•(3-t), ∴y=S△ABC-S△PBQ, =×32×-•t•(3-t), =t2-t+, ∴y与t的关系式为y=t2-t+, 假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的, 则S四边形APQC=S△ABC, ∴t2-t+=××32×, ∴t2-3t+3=0, ∵(-3)2-4×1×3<0, ∴方程无解, ∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的. (3)在Rt△PQM中,∵MQ=|BM-BQ|=|(1-t)|, MQ2+PM2=PQ2, ∴x2=[(1-t)]2+[(3-t)]2, =(t2-2t+1)+(9-6t+t2), =(4t2-12t+12)=3t2-9t+9, ∴t2-3t=(x2-9), ∵y=t2-t+, ∴y=t2-t+=×(x2-9)+=x2+, ∴y与x的关系式为y=x2+.
复制答案
考点分析:
相关试题推荐
如图,抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.

manfen5.com 满分网 查看答案
如图,在△OAB中,∠B=90°,∠BOA=30°,OA=4,将△OAB绕点O按逆时针方向旋转至△OA′B′,C点的坐标为(0,4).
(1)求A′点的坐标;
(2)求过C,A′,A三点的抛物线y=ax2+bx+c的解析式;
(3)在(2)中的抛物线上是否存在点P,使以O,A,P为顶点的三角形是等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).
(1)当t=1时,得到P1、Q1两点,求经过A、P1、Q1三点的抛物线解析式及对称轴l;
(2)当t为何值时,直线PQ与⊙C相切并写出此时点P和点Q的坐标;
(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
查看答案
manfen5.com 满分网如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.