满分5 > 初中数学试题 >

如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上...

如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.
(1)求l2的解析式;
(2)求证:点D一定在l2上;
(3)▱ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由.
注:计算结果不取近似值.

manfen5.com 满分网
(1)根据l1的解析式可求l1与x轴的交点为A(-2,0),C(2,0),顶点坐标是(0,-4),l2与l1关于x轴对称,实际上是l2与l1的顶点关于x轴对称,即l2的顶点为(0,4),设顶点式,可求抛物线l2的解析式; (2)平行四边形是中心对称图形,A、C关于原点对称,则B、D也关于原点对称,设点B(m,n),则点D(-m,-n),由于B(m,n)点是y=x2-4上任意一点,则n=m2-4,∴-n=-(m2-4)=-m2+4=-(-m)2+4,可知点D(-m,-n)在l2y=-x2+4的图象上; (3)构造∠ABC=90°是关键,连接OB,只要证明OB=OC即可,为求OB长,过点B作BH⊥x轴于H,用B的坐标为(x,x2-4),可求OB,用OB=OC求x,再计算面积. 【解析】 (1)设l2的解析式为y=ax2+bx+c(a≠0), ∵l1与x轴的交点为A(-2,0),C(2,0),顶点坐标是(0,-4),l2与l1关于x轴对称, ∴l2过A(-2,0),C(2,0),顶点坐标是(0,4),(1分) ∴(2分) ∴a=-1,b=0,c=4, 即l2的解析式为y=-x2+4.(3分) (还可利用顶点式、对称性关系等方法解答) (2)设点B(m,n)为l1:y=x2-4上任意一点,则n=m2-4,(*) ∵四边形ABCD′是平行四边形,点A、C关于原点O对称, ∴B、D′关于原点O对称,(4分) ∴点D′的坐标为D′(-m,-n). 由式方程式可知,-n=-(m2-4)=-(-m)2+4, 即点D′的坐标满足y=-x2+4,又D与D′关于y轴对称, ∴点D在l2上.(5分) (3)▱ABCD能为矩形.(6分) 过点B作BH⊥x轴于H,由点B在l1:y=x2-4上,可设点B的坐标为(x,x2-4), 则OH=|x|,BH=|x2-4|. 易知,当且仅当BO=AO=2时,▱ABCD为矩形. 在Rt△OBH中,由勾股定理得,|x|2+|x2-4|2=22, (x2-4)(x2-3)=0, ∴x=±2(舍去)、x=±.(7分) 所以,当点B坐标为B(,-1)或B′(-,-1)时,▱ABCD为矩形, 此时,点D的坐标分别是D(-,1)、D′(,1). 因此,符合条件的矩形有且只有2个,即矩形ABCD和矩形AB′CD′.(8分) 设直线AB与y轴交于E,显然,△AOE∽△AHB, ∴=, ∴. ∴EO=4-2.(9分) 由该图形的对称性知矩形ABCD与矩形AB′CD′重合部分是菱形,其面积为 S=2S△ACE=2××AC×EO=2××4×(4-2)=16-8.(10分) (还可求出直线AB与y轴交点E的坐标解答)
复制答案
考点分析:
相关试题推荐
如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.

manfen5.com 满分网 查看答案
在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).
(1)求点B的坐标;
(2)求过A,O,B三点的抛物线的解析式;
(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.

manfen5.com 满分网 查看答案
在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动时的速度都是1cm/s.而当点P到达点A时,点Q正好到达点C.设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm2)(如图2).分别以x,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.
(1)分别求出梯形中BA,AD的长度;
(2)写出图3中M,N两点的坐标;
(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在答题卷的图4(放大了的图3)中补全整个运动中y关于t的函数关系的大致图象.
manfen5.com 满分网
查看答案
如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.

manfen5.com 满分网 查看答案
如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点______(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.