满分5 > 初中数学试题 >

如图,在直角坐标系中,O为原点.点A在x轴的正半轴上,点B在y轴的正半轴上,ta...

如图,在直角坐标系中,O为原点.点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2.二次函数y=x2+mx+2的图象经过点A,B,顶点为D.
(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1.点P在平移后的二次函数manfen5.com 满分网图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.
(1)二次函数y=x2+mx+2的图象经过点B,可得B点坐标为(0,2),再根据tan∠OAB=2求出A点坐标,将A代入解析式即可求得函数解析式; (2)根据旋转不变性可轻松求得C点坐标,由于沿y轴运动,故图象开口大小、对称轴均不变,设出解析式,代入C点作标即可求解; (3)由于P点位置不固定,由图可知要分①当点P在对称轴的右侧时,②当点P在对称轴的左侧,同时在y轴的右侧时,③当点P在y轴的左侧时,三种情况讨论. 【解析】 (1)由题意,点B的坐标为(0,2),(1分) ∴OB=2, ∵tan∠OAB=2,即=2. ∴OA=1. ∴点A的坐标为(1,0).(2分) 又∵二次函数y=x2+mx+2的图象过点A, ∴0=12+m+2. 解得m=-3,(1分) ∴所求二次函数的解析式为y=x2-3x+2.(1分) (2)作CE⊥x轴于E, 由于∠BAC=90°,可知∠CAE=∠OBA,△CAE≌△OBA, 可得CE=OA=1,AE=OB=2,可得点C的坐标为(3,1).(2分) 由于沿y轴运动,故图象开口大小、对称轴均不变, 设出解析式为y=x2-3x+c,代入C点作标得1=9-9+c,c=1, 所求二次函数解析式为y=x2-3x+1.(1分) (3)由(2),经过平移后所得图象是原二次函数图象向下平移1个单位后所得的图象, 那么对称轴直线x=不变,且BB1=DD1=1.(1分) ∵点P在平移后所得二次函数图象上, 设点P的坐标为(x,x2-3x+1). 在△PBB1和△PDD1中,∵S△PBB1=2S△PDD1, ∴边BB1上的高是边DD1上的高的2倍. ①当点P在对称轴的右侧时,x=2(x-),得x=3, ∴点P的坐标为(3,1); ②当点P在对称轴的左侧,同时在y轴的右侧时,x=2(-x),得x=1, ∴点P的坐标为(1,-1); ③当点P在y轴的左侧时,x<0,又-x=2(-x), 得x=3>0(舍去), ∴所求点P的坐标为(3,1)或(1,-1).(3分)
复制答案
考点分析:
相关试题推荐
已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为manfen5.com 满分网
(1)请在横线上直接写出抛物线C2的解析式:______
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x-2与x轴相交于点A、B,与y轴相交于点C.
(1)求证:△AOC∽△COB;
(2)过点C作CD∥x轴交抛物线于点D.若点P在线段AB上以每秒1个单位的速度由A向B运动,同时点Q在线段CD上也以每秒1个单位的速度由D向C运动,则经过几秒后,PQ=AC.
查看答案
如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达B,C点),过D作∠ADE=45°,DE交AC于E.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数表达式;
(3)当△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图抛物线y=manfen5.com 满分网,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.
查看答案
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=manfen5.com 满分网S△ABC;若不存在,请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.