满分5 > 初中数学试题 >

已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=x2上的一个动...

已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=manfen5.com 满分网x2上的一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y=manfen5.com 满分网x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.
manfen5.com 满分网
(1)可先根据抛物线的解析式设出P点的坐标,那么可得出PM的长的表达式,P点到y=-1的长就是P点的纵坐标与-1的差的绝对值,那么可判断得出的表示PM和P到y=-1的距离的两个式子是否相等,如果相等,则y=-1是圆P的切线. (2)可通过构建相似三角形来求解,过Q,P作QR⊥直线y=-1,PH⊥直线y=-1,垂足为R,H,那么QR∥MN∥PH,根据平行线分线段成比例定理可得出QM:MP=RN:NH.(1)中已得出了PM=PH,那么同理可得出QM=QR,那么比例关系式可写成QR:PH=RN:NH,而这两组对应成比例的线段的夹角又都是直角,因此可求出∠QNR=∠PNH,根据等角的余角相等,可得出∠QNM=∠PNM. 【解析】 (1)设点P的坐标为(x,x2),则 PM==x2+1; 又因为点P到直线y=-1的距离为,x2-(-1)=x2+1 所以,以点P为圆心,PM为半径的圆与直线y=-1相切. (2)如图,分别过点P,Q作直线y=-1的垂线,垂足分别为H,R. 由(1)知,PH=PM,同理可得,QM=QR. 因为PH,MN,QR都垂直于直线y=-1, 所以,PH∥MN∥QR, 于是=, 所以, 因此,Rt△PHN∽Rt△QRN. 于是∠HNP=∠RNQ,从而∠PNM=∠QNM.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,两个一次函数y=x,y=-2x+12的图象相交于点A,动点E从O点出发,沿OA方向以每秒1个单位的速度运动,作EF∥y轴与直线BC交于点F,以EF为一边向x轴负方向作正方形EFMN,设正方形EFMN与△AOC的重叠部分的面积为S.
(1)求点A的坐标;
(2)求过A、B、O三点的抛物线的顶点P的坐标;
(3)当点E在线段OA上运动时,求出S与运动时间t(秒)的函数表达式;
(4)在(3)的条件下,t为何值时,S有最大值,最大值是多少?此时(2)中的抛物线的顶点P是否在直线EF上,请说明理由.

manfen5.com 满分网 查看答案
如图,直线y=-x+3与x轴、y轴分别交于点B、C,抛物线y=-x2+bx+c经过点B、C,点A是抛物线与x轴的另一个交点.
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)若P是抛物线上一点,且S△ABP=manfen5.com 满分网S△ABC,这样的点P有______个.

manfen5.com 满分网 查看答案
如图,以矩形OCPD的顶点O为原点,它的两条边所在的直线分别为x轴和y轴建立直角坐标系.以点P为圆心,PC为半径的⊙P与x轴的正半轴交于A、B两点,若抛物线y=ax2+bx+4经过A,B,C三点,且AB=6.
(1)求⊙P的半径R的长;
(2)求该抛物线的解析式并直接写出该抛物线与⊙P的第四个交点E的坐标;
(3)若以AB为直径的圆与直线AC的交点为F,求AF的长.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么
(1)设△POQ的面积为y,求y关于t的函数解析式;
(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;
(3)当t为何值时,△POQ与△AOB相似.

manfen5.com 满分网 查看答案
如图,△ABO中,O是坐标原点,Amanfen5.com 满分网,Bmanfen5.com 满分网
(1)①以原点O为位似中心,将△ABO放大,使变换后得到的△CDO与△ABO的位似比为2:1,且D在第一象限内,则C点坐标为(______

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.