满分5 > 初中数学试题 >

已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC...

已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连接AD、BD、BE.
manfen5.com 满分网
(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形.
____________
(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.
①写出顶点B的坐标(用a的代数式表示)______
②求抛物线的解析式;
③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由.
(1)由圆周角定理知:∠ADB=90°,首先可联想到的相似三角形是△BCD和△DOA;易知∠BAD=∠BED,可得的另一对相似三角形是Rt△ABD和Rt△EBC; (2)①用公式法或配方法均能求出顶点B的坐标; ②根据抛物线的解析式,易求得B、D、A的坐标,也就得到了OA、OD、CD、BC的长,根据(1)得出的相似三角形,即可根据对应的成比例线段求出a的值,也就能求出抛物线的解析式; ③由②易知△OAD是等腰Rt△,若△PAN与△OAD相似,则△PAN也必须是等腰Rt△;可根据抛物线的解析式设出P点坐标,然后根据PN=AN的条件来求出P点的坐标.(注意P点横坐标的取值范围) 【解析】 (1)△OAD∽△CDB,△ADB∽△ECB;(4分) (2)①(1,-4a)(5分) ②∵△OAD∽△CDB ∴(6分) ∵ax2-2ax-3a=0,可得A(3,0)(8分) 又∵OC=-4a,OD=-3a,CD=-a,CB=1, ∴ ∴a2=1, ∵a<0, ∴a=-1; 故抛物线的解析式为:y=-x2+2x+3(10分) ③存在,(11分) 设P(x,-x2+2x+3) ∵△PAN与△OAD相似,且△OAD为等腰三角形 ∴PN=AN 当x<0(x<-1)时,-x+3=-(-x2+2x+3),x1=-2,x2=3(舍去), ∴P(-2,-5)(13分) 当x>0(x>3)时,x-3=-(-x2+2x+3),x1=0,x2=3;(都不合题意舍去) 符合条件的点P为(-2,-5).(14分)
复制答案
考点分析:
相关试题推荐
已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
(1)请在横线上直接写出抛物线C2的解析式:______
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点顺时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+2x+c的图象经过点C、M、N.解答下列问题:
(1)分别求出直线BB′和抛物线所表示的函数解析式;
(2)将△MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由;
(3)将抛物线进行平移(沿上下或左右方向),使它经过点C′,求此时抛物线的解析式.

manfen5.com 满分网 查看答案
如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),C(1,-3),一抛物线经过A,E,C三点.
(1)求点E的坐标及此抛物线的表达式;
(2)如图2,如果AB位置不变,将DC向右平移k(k>0)个单位,求△AEC的面积S关于k的函数表达式;
(3)在第(2)问中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,请说明理由.
manfen5.com 满分网
查看答案
已知抛物线y=-x2+ax+b经过点A(1,0),B(0,-4).
(1)求抛物线的解析式;
(2)求此抛物线与坐标轴的三个交点连接而成的三角形的面积.
查看答案
已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是manfen5.com 满分网,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式 ______,伴随直线的解析式 ______
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是 ______
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.