满分5 > 初中数学试题 >

如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂...

如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E,F恰好分别在边BC,AC上.
(1)△ABC与△SBR是否相似,说明理由;
(2)请你探索线段TS与PA的长度之间的关系;
(3)设边AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积y的最小值和最大值.

manfen5.com 满分网
(1)三角形SBR和ABC中,有一个公共角B,都有一组直角,如果再有一组角相等即可证明两三角形相似,SR平分∠BRP,那么∠BRS=45°=∠C,因此两三角形的相似条件凑齐,两三角形相似; (2)应该是相等关系,△STP和△APE中,PT=PF,又有一组直角,那么只要再有一组角相等即可得出全等,∠TPS+∠APF=180-90=90°,那么不难证得∠STP=∠APF,因此两三角形全等,那么TS=PA; (3)要求正方形FPTE的面积,那么就要求出它的边长.RS是等腰直角△PRS的高,那么BS=PS,PS=,由(2)证得的全等三角形中我们可得出PS=AF,如果设PA=x,我们就能用x表示出AF的值,直角三角形APF中,我们就能用x表示出PF2,也就得出了y与x的函数关系式,然后确定x的取值范围,x最小时x=PA=0此时P与A重合,S与T重合,E与R重合.x最大时,T与R重合,此时TS=BS=SP=PA,因此PA=,那么x的范围就是0≤x≤,然后根据函数的性质和自变量的范围求出y的最大和最小值. 【解析】 (1)∵RS是直角∠PRB的平分线, ∴∠PRS=∠BRS=45°. 在△ABC与△SBR中,∠C=∠BRS=45°, ∠B是公共角, ∴△ABC∽△SBR. (2)线段TS的长度与PA相等. ∵四边形PTEF是正方形, ∴PF=PT,∠SPT+∠FPA=180°-∠TPF=90°, 在Rt△PFA中,∠PFA+∠FPA=90°, ∴∠PFA=∠TPS, ∴Rt△PAF≌Rt△TSP,∴PA=TS. 当点P运动到使得T与R重合时,这时△PFA与△TSP都是等腰直角三角形且底边相等,即有PA=TS. 由以上可知,线段ST的长度与PA相等. (3)由题意,RS是等腰Rt△PRB的底边PB上的高, ∴PS=BS,∴BS+PS+PA=1,∴PS=. 设PA的长为x,易知AF=PS, 则y=PF2=PA2+PS2,得y=x2+()2, 即y=, 根据二次函数的性质,当x=时,y有最小值为. 如图2,当点P运动使得T与R重合时,PA=TS为最大. 易证等腰Rt△PAF≌等腰Rt△PSR≌等腰Rt△BSR, ∴PA=. 如图3,当P与A重合时,得x=0. ∴x的取值范围是0≤x≤. ∴①当x的值由0增大到时,y的值由减小到 ∴②当x的值由增大到时,y的值由增大到. ∵≤≤, ∴在点P的运动过程中,正方形PTEF面积y的最小值是,y的最大值是.
复制答案
考点分析:
相关试题推荐
如图,已知反比例函数manfen5.com 满分网的图象与一次函数y=k2x+b的图象交于A、B两点,A(2,n),B(-1,-2).
(1)求反比例函数和一次函数的关系式;
(2)在直线AB上是否存在一点P,使△APO∽△AOB?若存在,求P点坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与△ABC相似.满足这样条件的直线最多有    条. 查看答案
在△ABC中,AB>BC>AC,D是AC的中点,过点D作直线L,使截得的三角形与原三角形相似,这样的直线L有    条. 查看答案
如图,在正方形网格上的三角形①,②,③中,与△ABC相似的三角形有    个.
manfen5.com 满分网 查看答案
如图,已知△ABC中,EF∥GH∥IJ∥BC,则图中相似三角形共有    对.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.