满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴...

如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.

manfen5.com 满分网
(1)先解一元二次方程,求出OA、OB的值,再利用三角形的面积公式,可得到y与x的关系式. (2)主要考虑两种情况,就是两条直角边互换对应边. (3)△POM面积最大,根据(1)中的函数式可求出x的值,由此得到OP的值,从而可知四边形MOPD是正方形,那么DM=3,若D在AB上,利用比例线段可求出DM=6,所以可以知道D不在AB上. 【解析】 (1)解二次方程x2-18x+72=0得,x1=6,x2=12,根据题意知,OA=12,OB=6. S△POM=×OM×OP=×(6-x)•x=-x2+3x, 即y=-x2+3x. (2)主要考虑有两种情况,一种是△MOP∽△BOA, 那么有=,即,,解得,x=4; 一种是△POM∽△BOA, 那么有,即,,解得,x=2, 所以当x=2或x=4时,以P、O、M为顶点的三角形与△AOB相似. (3)由(1)得,y=-x2+3x,可以知道,当x=-=3时,y有最大值. 即OP=3, ∵OP=3, ∴OM=6-x=3, ∴△MOP是等腰直角三角形.根据题意, 以对角线MP为对称轴得到△MDP与△MOP全等,且四边形MOPD是正方形, 所以DM=3,MD∥OA, 若D在对角线AB上,必须有, 即,DM=×OA=×12=6, ∵DM=6≠3, ∴点D不在对角线AB上.
复制答案
考点分析:
相关试题推荐
如图,平行四边形ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.
(1)求证:△BEF∽△CEG;
(2)求用x表示S的函数表达式,并写出x的取值范围;
(3)当E运动到何处时,S有最大值,最大值为多少?

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E,F恰好分别在边BC,AC上.
(1)△ABC与△SBR是否相似,说明理由;
(2)请你探索线段TS与PA的长度之间的关系;
(3)设边AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积y的最小值和最大值.

manfen5.com 满分网 查看答案
如图,已知反比例函数manfen5.com 满分网的图象与一次函数y=k2x+b的图象交于A、B两点,A(2,n),B(-1,-2).
(1)求反比例函数和一次函数的关系式;
(2)在直线AB上是否存在一点P,使△APO∽△AOB?若存在,求P点坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与△ABC相似.满足这样条件的直线最多有    条. 查看答案
在△ABC中,AB>BC>AC,D是AC的中点,过点D作直线L,使截得的三角形与原三角形相似,这样的直线L有    条. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.