满分5 > 初中数学试题 >

如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一...

如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为______,数量关系为______
②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)
(3)若AC=2manfen5.com 满分网,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
manfen5.com 满分网
(1)可通过证明三角形ABC和三角形ACF全等来实现.因为AD=AF,AB=AC,只要证明∠BAD=∠CAF即可,∠BAD=90°-∠DAC=∠FAC,这样就构成了全等三角形判定中的SAS,△ABD≌△ACF,因此BC=CF,∠B=∠ACF,因为∠B+∠ACB=90°,那么∠ACF+ACD=90°,即FC⊥BC,也就是FC⊥BD. (2)可通过构建三角形来求解.过点A作AG⊥AC交BC于点G,如果CF⊥BD,那么∠ACF=∠AGD=90°-∠ACD,又因为∠GAD=∠CAE=90°-∠CAD.AG=AC那么根据AAS可得出△AGD≌△ACF,AG=AC,又因为∠GAC=90°,可得出∠BCA=45°. 因此△BAC满足∠BCA=45°时,CF⊥BD. (3)过点A作AQ⊥BC交BC的延长线于点Q,通过构建与线段相关的三角形相似来求解. 图中我们可以看出∠ADQ+∠PDC=90°,那么很容易就能得出,∠QAD=∠PDC,那么就能得出直角三角形ADQ∽直角三角形PDC,那么可得出关于CP、CD、AQ、QD的比例关系,因为∠BCA=45°,∠Q=90°,那么AQ=QC=2,如果设CD=x,那么可用x表示出CD、QD,又知道AQ的值和CP、CD、QD、AQ的比例关系,那么可得出关于CP和x的函数关系式,然后根据函数的性质和x的取值范围求出CP的最大值. 【解析】 (1)①CF与BD位置关系是垂直,数量关系是相等 ②当点D在BC的延长线上时①的结论仍成立 由正方形ADEF得AD=AF,∠DAF=90度 ∵∠BAC=90°, ∴∠DAF=∠BAC, ∴∠DAB=∠FAC 又∵AB=AC, ∴△DAB≌△FAC, ∴CF=BD ∠ACF=∠ABD ∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45° ∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD. (2)当∠BCA=45°时,CF⊥BD(如图) 理由是:过点A作AG⊥AC交BC于点G,∴AC=AG 可证:△GAD≌△CAF∴∠ACF=∠AGD=45° ∠BCF=∠ACB+∠ACF=90°, 即CF⊥BD. (3)当具备∠BCA=45°时, 过点A作AQ⊥BC交CB的延长线于点Q,(如图), ∵DE与CF交于点P时,此时点D位于线段CQ上, ∵∠BCA=45°,AC=2, ∴由勾股定理可求得AQ=CQ=2. 设CD=x,∴DQ=2-x, ∵∠ADB+∠ADE+∠PDC=180° 且∠ADE=90°, ∴∠ADQ+∠PDC=90°, 又∵在直角△PCD中,∠PDC+∠DPC=90° ∴∠ADQ=∠DPC, ∵∠AQD=∠DCP=90° ∴△AQD∽△DCP, ∴=,∴. ∴CP=x2+x=(x-1)2+. ∵0<x≤, ∴当x=1时,CP有最大值.
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:
(1)当t为何值时,PE∥AB;
(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△PEQ=manfen5.com 满分网S△BCD?若存在,求出此时t的值;若不存在,说明理由;
(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.

manfen5.com 满分网 查看答案
如图,四边形ABCD是等腰梯形,其中AD∥BC,AD=2,BC=4,AB=CD=manfen5.com 满分网.点M从点B开始,以每秒2个单位长的速度向点C运动;点N从点D开始,以每秒1个单位长的速度向点A运动,若点M,N同时开始运动,点M与点C不重合,运动时间为t(t>0).过点N作NP垂直于BC,交BC于点P,交AC于点Q,连接MQ.
(1)用含t的代数式表示QP的长;
(2)设△CMQ的面积为S,求出S与t的函数关系式;
(3)求出t为何值时,△CMQ为等腰三角形?

manfen5.com 满分网 查看答案
已知梯形ABCD中,AD∥BC,且AD<BC,AD=5,AB=DC=2.
(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q.
①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;
②当CE=1时,写出AP的长.(不必写解答过程)

manfen5.com 满分网 查看答案
如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:
(1)线段AE与CG是否相等请说明理由:
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?

manfen5.com 满分网 查看答案
在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;
(3)当x为何值时,△EDQ为直角三角形?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.