已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC
2=AB•AD.
(1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值;
(3)试构造一个等腰梯形,该梯形连同它的两条对角线,得到了8个三角形,要求构造出的图形中有尽可能多的等腰三角形.(标明各角的度数)
考点分析:
相关试题推荐
如图,等腰三角形ABC中,若∠A=∠B=∠DPE,
(1)求证:△APD∽△BEP;
(2)若AP=1,PB=2,BE=
,试求出AD的长.
查看答案
如图,在△ABC中,AB=AC,∠A=36°,线段AB的垂直平分线交AB于D,交AC于E,连接BE.
(1)求证:∠CBE=36°;
(2)求证:AE
2=AC•EC.
查看答案
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;
(2)求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD
2+CE
2=DE
2;
(4)在旋转过程中,(3)中的等量关系BD
2+CE
2=DE
2是否始终成立?若成立,请证明;若不成立,请说明理由.
查看答案
如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为______,数量关系为______.
②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)
(3)若AC=2
,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
查看答案
如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:
(1)当t为何值时,PE∥AB;
(2)设△PEQ的面积为y(cm
2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S
△PEQ=
S
△BCD?若存在,求出此时t的值;若不存在,说明理由;
(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.
查看答案