满分5 > 初中数学试题 >

如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补. (1)求∠C的...

如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补.
(1)求∠C的度数;
(2)若BC>CD且AB=AD,请在图上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由;
(3)若CD=6,BC=8,S四边形ABCD=49,求AB的值.

manfen5.com 满分网
(1)根据多边形的内角和公式可得到∠C的度数为90°; (2)过点A作AE⊥BC,垂足为E.则线段AE把四边形ABCD分成△ABE和四边形AECD两部分,把△ABE以A点为旋转中心,逆时针旋转90°,则被分成的两部分重新拼成一个正方形.可以根据已知利用AAS来判定△ABE≌△ADF从而得到AE=AF,即得到四边形AECF是正方形; (3)连接BD,根据勾股定理求得BD的长,根据已知得到△ABD的面积,从而可求得AM的长,再根据相似三角形的判定得到△ABM∽△ABD.根据相似三角形的对应边成比例可得到BM的长,再根据勾股定理即可求得AB的长. 【解析】 (1)∵∠ABC与∠ADC互补, ∴∠ABC+∠ADC=180°. ∵∠A=90°, ∴∠C=360°-90°-180°=90°; (2)过点A作AE⊥BC,垂足为E. 则线段AE把四边形ABCD分成△ABE和四边形AECD两部分,把△ABE以A点为旋转中心,逆时针旋转90°,则被分成的两部分重新拼成一个正方形. 过点A作AF∥BC交CD的延长线于F, ∵∠ABC+∠ADC=180°,又∠ADF+∠ADC=180°, ∴∠ABC=∠ADF. ∵AD=AB,∠AEC=∠AFD=90°,∴△ABE≌△ADF. ∴AE=AF.∴四边形AECF是正方形; (3)解法1:连接BD, ∵∠C=90°,CD=6,BC=8,Rt△BCD中,BD==10 又∵S四边形ABCD=49,∴S△ABD=49-24=25. 过点A作AM⊥BD垂足为M, ∴S△ABD=×BD×AM=25.∴AM=5. 又∵∠BAD=90°,∴△ABM∽△DAM. ∴=. 设BM=x,则MD=10-x, ∴=.解得x=5. ∴AB=5. 解法2:连接BD,∠A=90°. 设AB=x,AD=y,则x2+y2=102,① ∵xy=25,∴xy=50.② 由①,②得:(x-y)2=0. ∴x=y. 2x2=100. ∴x=5.
复制答案
考点分析:
相关试题推荐
如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G.
求证:manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

manfen5.com 满分网 查看答案
(1)把两个含有45°角的直角三角板如图1放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.求证:AF⊥BE.
(2)把两个含有30°角的直角三角板如图2放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.问AF与BE是否垂直?并说明理由.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.

manfen5.com 满分网 查看答案
已知A、D是一段圆弧上的两点,且在直线l的同侧,分别过这两点作l的垂线,垂足为B、C,E是BC上一动点,连接AD、AE、DE,且∠AED=90度.
(1)如图①,如果AB=6,BC=16,且BE:CE=1:3,求AD的长;
(2)如图②,若点E恰为这段圆弧的圆心,则线段AB、BC、CD之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当A、D分别在直线l两侧且AB≠CD,而其余条件不变时,线段AB、BC、CD之间又有怎样的等量关系?请直接写出结论,不必证明.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.