满分5 > 初中数学试题 >

已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将...

已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;
(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.

manfen5.com 满分网
(Ⅰ)因为折叠后点B与点A重合,那么BC=AC,可先设出C点的坐标,然后表示出BC,AC,在直角三角形OCA中,根据勾股定理即可求出C点的纵坐标,也就求出了C点的坐标; (Ⅱ)方法同(Ⅰ)用OC表示出BC,B′C然后在直角三角形OB′C中根据勾股定理得出x,y的关系式.由于B′在OA上,因此有0≤x≤2,由此可求出y的取值范围; (Ⅲ)根据(Ⅰ)(Ⅱ)的思路,应该先得出OB″,OC的关系,知道OA,OB的值,那么可以通过证Rt△COB″∽Rt△BOA来实现.∠B″CO和∠CB″D是平行线B″D,OB的内错角,又因为∠OBA=∠CB″D,因此∠B″CO=∠OBA,即CB″∥BA,由此可得出两三角形相似,得出OC,OB″的比例关系,然后根据(1)(2)的思路,在直角三角形OB″C中求出OC的值,也就求出C点的坐标了. 【解析】 (Ⅰ)如图①,折叠后点B与点A重合,则△ACD≌△BCD. 设点C的坐标为(0,m)(m>0),则BC=OB-OC=4-m. ∴AC=BC=4-m. 在Rt△AOC中,由勾股定理,AC2=OC2+OA2, 即(4-m)2=m2+22,解得m=. ∴点C的坐标为(0,); (Ⅱ)如图②,折叠后点B落在OA边上的点为B′, ∴△B′CD≌△BCD. ∵OB′=x,OC=y, ∴B'C=BC=OB-OC=4-y, 在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2. ∴(4-y)2=y2+x2, 即y=-x2+2. 由点B′在边OA上,有0≤x≤2, ∴解析式y=-x2+2(0≤x≤2)为所求. ∵当0≤x≤2时,y随x的增大而减小, ∴y的取值范围为≤y≤2; (Ⅲ)如图③,折叠后点B落在OA边上的点为B″,且B″D∥OC. ∴∠OCB″=∠CB″D. 又∵∠CBD=∠CB″D, ∴∠OCB″=∠CBD, ∵CB″∥BA. ∴Rt△COB″∽Rt△BOA. ∴, ∴OC=2OB″. 在Rt△B″OC中, 设OB″=x(x>0),则OC=2x. 由(Ⅱ)的结论,得2x=-x2+2, 解得x=-8±4. ∵x>0, ∴x=-8+4. ∴点C的坐标为(0,8-16).
复制答案
考点分析:
相关试题推荐
如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E.
(1)求证:△ABF∽△COE;
(2)当O为AC的中点,manfen5.com 满分网时,如图2,求manfen5.com 满分网的值;
(3)当O为AC边中点,manfen5.com 满分网时,请直接写出manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴、y轴的正半轴上,且满足manfen5.com 满分网+|OA-1|=0.
(1)求点A、点B的坐标;
(2)若点P从C点出发,以每秒1个单位的速度沿线段CB由C向B运动,连接AP,设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式;
(3)在(2)的条件下,是否存在点P,使以点A,B,P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=90°.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证Rt△PME∽Rt△PNF,得出PN=manfen5.com 满分网PM.(不需证明)当PC=manfen5.com 满分网PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.
manfen5.com 满分网
查看答案
如图,AD=2,AC=4,BC=6,∠B=36°,∠D=117°,△ABC∽△DAC.
(1)求AB的长;
(2)求CD的长;
(3)求∠BAD的大小.

manfen5.com 满分网 查看答案
我们已经知道:如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长,对角线等所有元素都对应成比例,就可以称它们为相似图形.
现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形.请指出其中哪几对是相似图形,哪几对不是相似图形,并简单地说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.