满分5 > 初中数学试题 >

如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点. ...

如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点.
(1)求证:△ADE≌△BCF;
(2)若AD=4cm,AB=8cm,求CF的长.

manfen5.com 满分网
(1)根据矩形的对边相等、对角线相等且相互平分等性质可证△ADE≌△BCF; (2)要求CF的长,若CF在一直角三角形中,则可用勾股定理求解.由此需要添加辅助线,过点F作FG⊥CD于点G,则△DFG∽△DBC;由(1)的结论可得DF=3FB,则可算出FG、DG的值,进而求得CF的长. (1)证明:∵四边形ABCD为矩形 ∴AD=BC,OA=OC,OB=OD,AC=BD,AD∥BC ∴OA=OB=OC,∠DAE=∠OCB(两直线平行,内错角相等) ∴∠OCB=∠OBC ∴∠DAE=∠CBF 又∵AE=OA,BF=OB ∴AE=BF ∴△ADE≌△BCF; (2)【解析】 过点F作FG⊥CD于点G, ∴∠DGF=90° ∵四边形ABCD是矩形, ∴∠DCB=90° ∴∠DGF=∠DCB 又∵∠FDG=∠BDC ∴△DFG∽△DBC ∴ 由(1)可知F为OB的中点, 所以DF=3FB,得 ∴ ∴FG=3,DG=6 ∴GC=DC-DG=8-6=2 在Rt△FGC中,cm. (说明:其他解法可参照给分,如延长CF交AB于点H,利用△DFC∽△BFH计算.)
复制答案
考点分析:
相关试题推荐
(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;
(2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论.

manfen5.com 满分网 查看答案
把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.
(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=______
(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;
(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.
(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;
(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由.

manfen5.com 满分网 查看答案
如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.
(1)试说明:AE⊥BF;
(2)判断线段DF与CE的大小关系,并予以说明.

manfen5.com 满分网 查看答案
已知:等腰Rt△ABC中,∠A=90°,
(1)如图1,E为AB上任意一点,以CE为斜边作等腰Rt△CDE,连接AD,则有AD∥BC;
(2)若将等腰Rt△ABC改为正△ABC,如图2所示,E为AB边上任一点,△CDE为正三角形,连接AD,上述结论还成立吗?答______
(3)若△ABC为任意等腰三角形,AB=AC,如图3,E为AB上任一点,△DEC∽△ABC,连接AD,请问AD与BC的位置关系怎样?答:______
请你在上述3个结论中,任选一个结论进行证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.