满分5 > 初中数学试题 >

已知点E、F在△ABC的边AB所在的直线上,且AE=BF,FH∥EG∥AC,FH...

已知点E、F在△ABC的边AB所在的直线上,且AE=BF,FH∥EG∥AC,FH、EG分别交边BC所在的直线于点H、G.
(1)如图1,如果点E、F在边AB上,那么EG+FH=AC;
(2)如图2,如果点E在边AB上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是______
(3)如图3,如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是______
对(1)(2)(3)三种情况的结论,请任选一个给予证明.
manfen5.com 满分网
(1)由FH∥EG∥AC,得,△BFH∽△BEG∽△BAC,得,由比例的性质求解; (2)过点E作EP∥BC交AC于P,由四边形EPCG为平行四边形,得EG=PC,证△BHF≌△EPA得HF=AP即可得到答案; (3)方法同2. (1)证明:∵FH∥EG∥AC, ∴∠BFH=∠BEG=∠A,△BFH∽△BEG∽△BAC. ∴. ∴. 又∵BF=EA, ∴. ∴. ∴AC=FH+EG. (2)线段EG、FH、AC的长度的关系为:EG+FH=AC. 证明(2):过点E作EP∥BC交AC于P, ∵EG∥AC, ∴四边形EPCG为平行四边形. ∴EG=PC. ∵HF∥EG∥AC, ∴∠F=∠A,∠FBH=∠ABC=∠AEP. 又∵AE=BF, ∴△BHF≌△EPA. ∴HF=AP. ∴AC=PC+AP=EG+HF. 即EG+FH=AC. (3)线段EG、FH、AC的长度的关系为:EG-FH=AC. 如图,过点A作AP∥BC交EG于P, ∵EG∥AC, ∴四边形APGC为平行四边形. ∴AC=PG. ∵HF∥EG∥AC, ∴∠F=∠E,∠FBH=∠ABC=∠PAE. 又∵AE=BF, ∴△BHF≌△EPA. ∴HF=EP. ∴AC=EG-EP=EG-HF. 即EG-FH=AC.
复制答案
考点分析:
相关试题推荐
如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点.
(1)求证:△ADE≌△BCF;
(2)若AD=4cm,AB=8cm,求CF的长.

manfen5.com 满分网 查看答案
(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;
(2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论.

manfen5.com 满分网 查看答案
把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.
(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=______
(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;
(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.
(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;
(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由.

manfen5.com 满分网 查看答案
如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.
(1)试说明:AE⊥BF;
(2)判断线段DF与CE的大小关系,并予以说明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.