满分5 > 初中数学试题 >

如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上...

如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的长;
(3)在(1)(2)的条件下,若AD=3,求BF的长.(计算结果可含根号)

manfen5.com 满分网
(1)根据题意可求得:∠AFB=∠D,∠BAF=∠AED,由如果两个三角形的两个对应角相等,那么这两个三角形相似,可证得△ABF∽△EAD; (2)由直角三角形的性质,即可求得; (3)根据相似三角形的对应边成比例,求得. (1)证明:∵AD∥BC, ∴∠C+∠ADE=180°. ∵∠BFE=∠C, ∴∠AFB=∠EDA. ∵AB∥DC, ∴∠BAE=∠AED. ∴△ABF∽△EAD. (2)【解析】 ∵AB∥CD,BE⊥CD, ∴∠ABE=90°, ∵AB=4,∠BAE=30°, ∴AE===. (3)【解析】 ∵△ABF∽△EAD, ∴. ∴BF=.
复制答案
考点分析:
相关试题推荐
操作:如图,在正方形ABCD中,P是CD上一动点(与C、D不重合),使三角板的直角顶点与点P重合(含30度角的直角三角板),并且一条直角边始终经过点B,另一直角边与正方形的某一边所在直线交于点E.
探究:①观察操作结果,哪一个三角形与△BPC相似,写出你的结论,并说明理由;
②当点P位于CD的中点时,你找到的三角形与△BPC的周长比和面积比分别是多少?

manfen5.com 满分网 查看答案
已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E,F,得四边形DECF,设DE=x,DF=y.
(1)用含y的代数式表示AE,得AE=______
(2)求y与x之间的函数关系式,并求出x的取值范围;
(3)设四边形DECF的面积为S,求出S的最大值.

manfen5.com 满分网 查看答案
已知点E、F在△ABC的边AB所在的直线上,且AE=BF,FH∥EG∥AC,FH、EG分别交边BC所在的直线于点H、G.
(1)如图1,如果点E、F在边AB上,那么EG+FH=AC;
(2)如图2,如果点E在边AB上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是______
(3)如图3,如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是______
对(1)(2)(3)三种情况的结论,请任选一个给予证明.
manfen5.com 满分网
查看答案
如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点.
(1)求证:△ADE≌△BCF;
(2)若AD=4cm,AB=8cm,求CF的长.

manfen5.com 满分网 查看答案
(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;
(2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.