满分5 > 初中数学试题 >

如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm...

如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

manfen5.com 满分网
(1)由CD∥AB,得∠DCA=∠CAB,加上一组直角,即可证得所求的三角形相似. (2)在Rt△ABC中,由勾股定理可求得AC的长,根据(1)题所得相似三角形的比例线段,即可求出DC的长. (3)分析图象可知:四边形AFEC的面积可由△ABC、△BEF的面积差求得,分别求出两者的面积,即可得到y、t的函数关系式,进而可根据函数的性质及自变量的取值范围求出y的最小值. 【解析】 (1)∵CD∥AB,∴∠BAC=∠DCA 又AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°, ∴△ACD∽△BAC. (2)Rt△ABC中,AC==8cm, ∵△ACD∽△BAC,∴=, 即,解得:DC=6.4cm. (3)过点E作AB的垂线,垂足为G, ∵∠ACB=∠EGB=90°,∠B公共, ∴△ACB∽△EGB, ∴,即,故; y=S△ABC-S△BEF = =; 故当t=时,y的最小值为19.
复制答案
考点分析:
相关试题推荐
在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在线段AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围)
②当x取何值时,y有最大值?并求其最大值;
(3)若F在直角边BC上(点F与B、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.

manfen5.com 满分网 查看答案
如图所示,P是△ABC边AC上的动点,以P为顶点作矩形PDEF,顶点D,E在边BC上,顶点F在边AB上;△ABC的底边BC及BC上的高的长分别为a,h,且是关于x的一元二次方程mx2+nx+k=0的两个实数根,设过D,E,F三点的⊙O的面积为S⊙O,矩形PDEF的面积为S矩形PDEF
(1)求证:以a+h为边长的正方形面积与以a、h为边长的矩形面积之比不小于4;
(2)求manfen5.com 满分网的最小值;
(3)当manfen5.com 满分网的值最小时,过点A作BC的平行线交直线BP与Q,这时线段AQ的长与m,n,k的取值是否有关?请说明理由.
manfen5.com 满分网
查看答案
如图,在△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P、Q分别从A、C两点同时出发,其中点P以1cm/s的速度沿AC向终点C移动;点Q以manfen5.com 满分网cm/s的速度沿CB向终点B移动.过P作PE∥CB交AD于点E,设动点的运动时间为x秒.
(1)用含x的代数式表示EP;
(2)当Q在线段CD上运动几秒时,四边形PEDQ是平行四边形;
(3)当Q在线段BD(不包括点B、点D)上运动时,求四边形EPDQ面积的最大值.

manfen5.com 满分网 查看答案
如图,直角△ABC中,∠C=90°,manfen5.com 满分网manfen5.com 满分网,点P为边BC上一动点,PD∥AB,PD交AC于点D,连接AP.
(1)求AC、BC的长;
(2)设PC的长为x,△ADP的面积为y.当x为何值时,y最大,并求出最大值.

manfen5.com 满分网 查看答案
已知:O是坐标原点,P(m,n)(m>0)是函数y=manfen5.com 满分网(k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+manfen5.com 满分网
(1)当n=1时,求点A的坐标;
(2)若OP=AP,求k的值;
(3)设n是小于20的整数,且k≠manfen5.com 满分网,求OP2的最小值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.