锐角△ABC中,BC=6,S
△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)
(1)△ABC中边BC上高AD=______;
(2)当x=______时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
考点分析:
相关试题推荐
如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E,F恰好分别在边BC,AC上.
(1)△ABC与△SBR是否相似,说明理由;
(2)请你探索线段TS与PA的长度之间的关系;
(3)设边AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积y的最小值和最大值.
查看答案
如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB
1D
1和△CB
2D
2两个三角形(如图(2)所示),将△AB
1D
1沿直线AB
1方向移动(点B
2始终在AB
1上,AB
1与CD
2始终保持平行),当点A与B
2重合时停止平移,在平移过程中,AD
1与B
2D
2交于点E,B
2C与B
1D
1交于点F,
(1)当△AB
1D
1平移到图(3)的位置时,试判断四边形B
2FD
1E是什么四边形?并证明你的结论;
(2)设平移距离B
2B
1为x,四边形B
2FD
1E的面积为y,求y与x的函数关系式;并求出四边形B
2FD
1E的面积的最大值;
(3)连接B
1C(请在图(3)中画出).当平移距离B
2B
1的值是多少时,△B
1B
2F与△B
1CF相似?
查看答案
如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB重合部分的面积为S.
根据上述条件,回答下列问题:
(1)当矩形OEDC的顶点D在直线AB上时,求t的值;
(2)当t=4时,求S的值;
(3)直接写出S与t的函数关系式(不必写出解题过程);
(4)若S=12,则t=______.
查看答案
如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A⇒B⇒C⇒D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.
查看答案
已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.
(1)填空:菱形ABCD的边长是______、面积是______、高BE的长是______;
(2)探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.
查看答案