满分5 > 初中数学试题 >

在梯形ABCD中,AB∥CD,AB=8cm,CD=2cm,AD=BC=6cm,M...

在梯形ABCD中,AB∥CD,AB=8cm,CD=2cm,AD=BC=6cm,M、N为同时从A点出发的两个动点,点M沿A⇒D⇒C⇒B的方向运动,速度为2cm/秒;点N沿A⇒B的方向运动,速度为1cm/秒.当M、N其中一点到达B点时,点M、N运动停止.设点M、N的运动时间为x秒,以点A、M、N为顶点的三角形的面积为ycm2
(1)试求出当0<x<3时,y与x之间的函数关系式;
(2)试求出当4<x<7时,y与x之间的函数关系式;
(3)当3<x<4时,以A、M、N为顶点的三角形与以B、M、N为顶点的三角形是否有可能相似?若相似,试求出x的值;若不相似,试说明理由.

manfen5.com 满分网
(1)由题意可证∠A=60˚,进而由三角函数可求△AMN的面积即y=x2. (2)过点M作MG⊥AB,垂足为G.可证△MGB∽△CFB,即求GM=(7-x),所以△AMN的面积即y=x-x2. (3)当3<x<4时,以A,M,N为顶点的三角形与以B,M,N为顶点的三角形不可能相似. 当x=3时,动点M与点D重合时,动点N恰好与点E重合,此时∠MNA=90˚. 当3<x<4时,∠MNA必为钝角.则∠MNA≠∠MNB,而∠MNA=∠NMB+∠MBN,因此,△AMN与△BMN不可能相似. 【解析】 (1)如图①,过D作DE⊥AB,垂足为E;过C作CF⊥AB,垂足为F. ∴CD=EF=2. ∵AD=BC,DE=CF, ∴Rt△ADE≌Rt△BCF. ∴AE=BF=3.(1分) 在Rt△ADE中,AD=6,AE=3, ∴∠ADE=30˚,∠A=60˚ ∴在△AMN中,AN=x,高为2x•sin60°=x. ∴y=•x•x.即y=x2. (2)如图②,过点M作MG⊥AB,垂足为G. ∵MG∥CF, ∴△MGB∽△CFB. ∴GM:CF=BM:BC. ∵CF=DE=, ∴GM:3=(6+2+6-2x):6. ∴GM=(7-x). ∴y=(7-x). 即y=x-x2. (3)当3<x<4时,以A,M,N为顶点的三角形与以B,M,N为顶点的三角形不可能相似. 当x=3时,动点M与点D重合时,动点N恰好与点E重合,此时∠MNA=90˚. 当3<x<4时,∠MNA必为钝角.则∠MNA≠∠MNB,而∠MNA=∠NMB+∠MBN,因此,△AMN与△BMN不可能相似.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中,O为坐标原点,平行四边形OABC的边OA在x轴上,∠B=60°,OA=6,OC=4,D是BC的中点,延长AD交OC的延长线于点E.
(1)画出△ECD关于边CD所在直线为对称轴的对称图形△E1CD,并求出点E1的坐标;
(2)求经过C、E1、B三点的抛物线的函数表达式;
(3)请探求经过C、E1、B三点的抛物线上是否存在点P,使以点P、B、C为顶点的三角形与△ECD相似?若存在这样的点P,请求出点P的坐标;若不存在这样的点P,请说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1<x2),且x1,x2是方程x2-2x-3=0的两个实数根,点C为抛物线与y轴的交点.
(1)求a,b的值;
(2)分别求出直线AC和BC的解析式;
(3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且BC、DF在一条直线上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不动,让Rt△DEF沿CB向左平移,直到点F和点B重合为止.设FC=x,两个三角形重叠阴影部分的面积为y.
(1)如图2,求当x=manfen5.com 满分网时,y的值是多少?
(2)如图3,当点E移动到AB上时,求x、y的值;
(3)求y与x之间的函数关系式.
manfen5.com 满分网
查看答案
如图,平行四边形ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.
(1)求证:△BEF∽△CEG;
(2)求用x表示S的函数表达式,并写出x的取值范围;
(3)当E运动到何处时,S有最大值,最大值为多少?

manfen5.com 满分网 查看答案
在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y.
(1)求y与x的函数表达式;
(2)当x为何值时,y有最大值,最大值是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.