满分5 > 初中数学试题 >

如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB...

manfen5.com 满分网如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD交AB于点D.
(1)求点B的坐标;
(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;
(3)当点P运动什么位置时,使得∠CPD=∠OAB,且manfen5.com 满分网,求这时点P的坐标.
(1)过B作BQ⊥OA于Q易得∠COA=∠BAQ=60°,在Rt△BQA中,根据三角函数的定义可得QB的长,进而可得OQ的长;即可得B的坐标; (2)分点P在x正半轴上与x负半轴上上两种情况讨论,结合等腰三角形的性质,可得OP、OC的长,进而可得答案; (3)根据题意易得△COP∽△PAD,进而可得比例关系,代入数据可得答案. 【解析】 (1)过B作BQ⊥OA于Q,则∠COA=∠BAQ=60°, 在Rt△BQA中,QB=ABsin60°=, , ∴OQ=OA-QA=7-2=5. ∴B(5,). (2)①当OC=OP时,若点P在x正半轴上, ∵∠COA=60°,△OCP为等腰三角形, ∴△OCP是等边三角形. ∴OP=OC=CP=4. ∴P(4,0). 若点P在x负半轴上, ∵∠COA=60°, ∴∠COP=120°. ∴△OCP为顶角120°的等腰三角形. ∴OP=OC=4. ∴P(-4,0) ∴点P的坐标为(4,0)或(-4,0). ②当OC=CP时,由题意可得C的横坐标为:4×cos60°=2, ∴P点坐标为(4,0) ③当OP=CP时, ∵∠COA=60°, ∴△OPC是等边三角形,同①可得出P(4,0). 综上可得点P的坐标为(4,0)或(-4,0). (3)∵∠CPD=∠OAB=∠COP=60°, ∴∠OPC+∠DPA=120°. 又∵∠PDA+∠DPA=120°, ∴∠OPC=∠PDA. ∵∠COP=∠A=60°, ∴△COP∽△PAD. ∴. ∵,AB=4, ∴BD=, AD=. 即. ∴7OP-OP2=6得OP=1或6. ∴P点坐标为(1,0)或(6,0).
复制答案
考点分析:
相关试题推荐
如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.
(1)梯形ABCD的面积等于______
(2)当PQ∥AB时,P点离开D点的时间等于______秒;
(3)当P,Q,C三点构成直角三角形时,P点离开D点多少时间?

manfen5.com 满分网 查看答案
如图所示,等腰梯形ABCD中,DC∥AB,对角线AC与BD交于点O,AD=DC,AC=BD=AB.
(1)若∠ABD=a,求a的度数;
(2)求证:OB2=OD•BD.

manfen5.com 满分网 查看答案
如图1,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°.
(1)如图2,动点P、Q同时以每秒1cm的速度从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到点C停止,设P、Q同时从点B出发t秒时,△PBQ的面积为y1(cm2),求y1(cm2)关于t(秒)的函数关系式;
(2)如图3,动点P以每秒1cm的速度从点B出发沿BA运动,点E在线段CD上随之运动,且PC=PE.设点P从点B出发t秒时,四边形PADE的面积为y2(cm2),求y2(cm2)关于t(秒)的函数关系式,并写出自变量t的取值范围.
manfen5.com 满分网
查看答案
如图,梯形ABCD中,AB∥DC,∠B=90°,E为BC上一点,且AE⊥ED.若BC=12,DC=7,BE:EC=1:2,求AB的长.

manfen5.com 满分网 查看答案
如图,梯形ABCD中.AB∥CD.且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.