满分5 > 初中数学试题 >

如图,半径为2的⊙O内有互相垂直的两条弦AB、CD相交于P点. (1)求证:PA...

如图,半径为2manfen5.com 满分网的⊙O内有互相垂直的两条弦AB、CD相交于P点.
(1)求证:PA•PB=PC•PD;
(2)设BC的中点为F,连接FP并延长交AD于E,求证:EF⊥AD;
(3)若AB=8,CD=6,求OP的长.

manfen5.com 满分网
(1)求证PA•PB=PC•PD可以转化为证明Rt△APD∽Rt△CPB; (2)求证EF⊥AD,可以转化为证明∠DPE+∠D=90°,从而转化为证明∠A=∠DPE; (3)作OM⊥AB于M,ON⊥CD于N,OP是矩形MONP的对角线,根据勾股定理就可以求出OP的长. (1)证明:∵∠A、∠C所对的圆弧相同, ∴∠A=∠C, ∴Rt△APD∽Rt△CPB, ∴, ∴PA•PB=PC•PD;(3分) (2)证明:∵F为BC的中点,△BPC为直角三角形, ∴FP=FC,∴∠C=∠CPF. 又∠C=∠A,∠DPE=∠CPF, ∴∠A=∠DPE. ∵∠A+∠D=90°, ∴∠DPE+∠D=90°, ∴EF⊥AD;(7分) (3)【解析】 作OM⊥AB于M,ON⊥CD于N,连接PO, ∴OM2=(2)2-42=4,ON2=(2)2-32=11, 易证四边形MONP是矩形, ∴OP=.      (7分)
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCD中,AD∥BC,∠B=∠ACD.
(1)请再写出图中另外一对相等的角;
(2)若AC=6,BC=9,试求梯形ABCD的中位线的长度.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,等腰梯形AOBC的四个顶点坐标分别为A(2,2manfen5.com 满分网),O(0,0),B(8,0),C(6,2manfen5.com 满分网).
(1)求等腰梯形AOBC的面积;
(2)试说明点A在以OB的中点D为圆心,OB为直径的圆上;
(3)在第一象限内确定点M,使△MOB与△AOB相似,求出所有符合条件的点M的坐标.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD交AB于点D.
(1)求点B的坐标;
(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;
(3)当点P运动什么位置时,使得∠CPD=∠OAB,且manfen5.com 满分网,求这时点P的坐标.
查看答案
如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.
(1)梯形ABCD的面积等于______
(2)当PQ∥AB时,P点离开D点的时间等于______秒;
(3)当P,Q,C三点构成直角三角形时,P点离开D点多少时间?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.