(1)如图①,⊙O的弦CE垂直于直径AB,垂足为点G,点D在
上,作直线CD,ED,与直线AB分别交于点F,M,连接OC,求证:OC
2=OM•OF;
(2)把(1)中的“点D在
上”改为“点D在
上”,其余条件不变(如图②),试问:(1)中的结论是否成立?并说明理由.
考点分析:
相关试题推荐
如图,已知AB是⊙O的直径,AC是弦,过点O作OD⊥AC于D,连接BC.
(1)求证:OD=
BC;
(2)若∠BAC=40°,求
的度数.
查看答案
如图,AB为⊙O的直径,OE交弦AC于点P,交
于点M,且
=
.
(1)求证:OP=
BC;
(2)如果AE
2=EP•EO,且AE=
,BC=6,求⊙O的半径.
查看答案
如图,半径为2
的⊙O内有互相垂直的两条弦AB、CD相交于P点.
(1)求证:PA•PB=PC•PD;
(2)设BC的中点为F,连接FP并延长交AD于E,求证:EF⊥AD;
(3)若AB=8,CD=6,求OP的长.
查看答案
如图,在梯形ABCD中,AD∥BC,∠B=∠ACD.
(1)请再写出图中另外一对相等的角;
(2)若AC=6,BC=9,试求梯形ABCD的中位线的长度.
查看答案
如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.
查看答案