满分5 > 初中数学试题 >

如图,已知半圆O的直径AB=4,将一个三角板的直角顶点固定在圆心O上,当三角板绕...

如图,已知半圆O的直径AB=4,将一个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连接AD、BC交于点E.
(1)求证:△ACE∽△BDE;
(2)求证:BD=DE恒成立;
(3)设BD=x,求△AEC的面积y与x的函数关系式,并写出自变量x的取值范围.

manfen5.com 满分网
(1)根据圆周角定理的推论得到两个角相等,即证明三角形相似; (2)根据圆周角定理得到∠B=45°,根据圆周角定理的推论得到∠BDE=90°,从而得到等腰直角三角形; (3)在直角三角形ABD中,根据勾股定理表示出AD的长,再进一步表示AE的长,根据等腰直角三角形的性质进行分析计算. (1)证明:∵∠ACB与∠ADB都是半圆所对的圆周角, ∴∠ACB=∠ADB=90°, ∵∠AEC=∠DEB(对顶角相等). 所以△ACE∽△BDE (2)证明:∵∠DOC=90°, ∴∠AOC+∠BOD=90° ∴∠BAD+∠ABC=(∠AOC+∠BOD)=45° ∴∠BED=∠BAD+∠ABC=45°. 又∵∠BDE=90°, ∴△BED是等腰直角三角形, ∴BD=DE. (3)【解析】 ∵BD=x,BD=DE ∴DE=x,AD=, ∴AE=AD-DE=-x. ∵△ACE∽△BDE, ∴△AEC也是等腰直角三角形, ∴AC=AE=(-x) ∵△ACE∽△BDE, ∴AC=EC. ∴y=AC×EC=AC2=(-x)2=4-x, 点C与点A重合时,点D为AB弧的中点,此时BD=×=2, 所以,x的取值范围为:0<x<2.
复制答案
考点分析:
相关试题推荐
如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB.
(1)求证:△PAC与△PDB是否相似______(填“是”或“否”);
(2)当manfen5.com 满分网=______时,manfen5.com 满分网=4.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的外接圆,AB为直径,AC=CF,CD⊥AB于D,且交⊙O于G,AF交CD于E.
(1)求∠ACB的度数;
(2)求证:AE=CE;
(3)求证:AC2=AE•AF.

manfen5.com 满分网 查看答案
已知:如图,在平面直角坐标系中,点C在y轴上,以C为圆心,4cm为半径的圆与x轴相交于点A、B,与y轴相交于D、E,且manfen5.com 满分网=manfen5.com 满分网.点P是⊙C上一动点(P点与A、B点不重合).连接BP、AP.
(1)求∠BPA的度数;
(2)若过点P的⊙C的切线交x轴于点G,是否存在点P,使△APB与以A、G、P为顶点的三角形相似?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
某“研究性学习小组”遇到了以下问题,请参与:
已知,△ABC是等边三角形且内接于⊙O,取manfen5.com 满分网上异于A、B的点M.设直线CA与BM相交于点K,直线CB与AM相交于点N.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)如图1,图2,图3,M分别为manfen5.com 满分网的中点、三分之一点、四分之一点,△ABC的边长均为2,分别测量出AK、BN的长,计算AK•BN的值(精确到0.01)并将结果填入下表中:
 △ABC的边长 AK•BN的值 
 图1 
 图2 2 
 图3 2 
(2)如图4,当M为manfen5.com 满分网上任意一点时,根据(1)的结果,猜想AK•BN与AB的数量关系式为______
(3)对(2)中提出的猜想,依图4给出证明.
查看答案
如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过C、D、E三点的圆O1交AC的延长线于点F,连接EF、DF.
(1)求证:△AEF∽△FED;
(2)若AD=6,DE=3,求EF的长;
(3)若DF∥BE,试判断△ABE的形状,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.