满分5 > 初中数学试题 >

如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E...

如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为manfen5.com 满分网
(1)求证:△CDE∽△CBA;
(2)求DE的长.

manfen5.com 满分网
(1)由圆内接四边形的外角等于它的内对角知,∠CED=∠A(或∠CDE=∠B),又有∠C=∠C,故△CDE∽△CBA. (2)连接AE. 由(1)中△CDE∽△CBA得DE:BA=CE:CA,由于直径对的圆周角是直角,有∠AEB=∠AEC=90°; 在Rt△AEC中,有∠C=60°,∠CAE=30°.则DE:BA=CE:CA=1:2,即DE=2. (1)证明:∵四边形ABED为⊙O的内接四边形, ∴∠CED=∠A(或∠CDE=∠B); 又∠C=∠C, ∴△CDE∽△CBA. (2)解法1:连接AE. 由(1)得, ∵AB为⊙O的直径, ∴∠AEB=∠AEC=90°. 在Rt△AEC中,∵∠C=60°,∴∠CAE=30°; ∴,即DE=2. 解法2:连接DO,EO. ∵AO=DO=OE=OB, ∴∠A=∠ODA,∠B=∠OEB; ∵四边形ABED为⊙O的内接四边形, ∴∠A=∠CED,∠B=∠CDE; 而∠CDE+∠CED=120°,∠A+∠B+∠ADE+∠DEB=360°, ∴∠ODE+∠OED=120° 则∠DOE=60°, ∴△ODE为等边三角形; ∴DE=OB=2.
复制答案
考点分析:
相关试题推荐
如图,已知半圆O的直径AB=4,将一个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连接AD、BC交于点E.
(1)求证:△ACE∽△BDE;
(2)求证:BD=DE恒成立;
(3)设BD=x,求△AEC的面积y与x的函数关系式,并写出自变量x的取值范围.

manfen5.com 满分网 查看答案
如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB.
(1)求证:△PAC与△PDB是否相似______(填“是”或“否”);
(2)当manfen5.com 满分网=______时,manfen5.com 满分网=4.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的外接圆,AB为直径,AC=CF,CD⊥AB于D,且交⊙O于G,AF交CD于E.
(1)求∠ACB的度数;
(2)求证:AE=CE;
(3)求证:AC2=AE•AF.

manfen5.com 满分网 查看答案
已知:如图,在平面直角坐标系中,点C在y轴上,以C为圆心,4cm为半径的圆与x轴相交于点A、B,与y轴相交于D、E,且manfen5.com 满分网=manfen5.com 满分网.点P是⊙C上一动点(P点与A、B点不重合).连接BP、AP.
(1)求∠BPA的度数;
(2)若过点P的⊙C的切线交x轴于点G,是否存在点P,使△APB与以A、G、P为顶点的三角形相似?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
某“研究性学习小组”遇到了以下问题,请参与:
已知,△ABC是等边三角形且内接于⊙O,取manfen5.com 满分网上异于A、B的点M.设直线CA与BM相交于点K,直线CB与AM相交于点N.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)如图1,图2,图3,M分别为manfen5.com 满分网的中点、三分之一点、四分之一点,△ABC的边长均为2,分别测量出AK、BN的长,计算AK•BN的值(精确到0.01)并将结果填入下表中:
 △ABC的边长 AK•BN的值 
 图1 
 图2 2 
 图3 2 
(2)如图4,当M为manfen5.com 满分网上任意一点时,根据(1)的结果,猜想AK•BN与AB的数量关系式为______
(3)对(2)中提出的猜想,依图4给出证明.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.