满分5 > 初中数学试题 >

图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合...

图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.
(1)求x的取值范围;
(2)若∠CPN=60°,求x的值;
(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留).
manfen5.com 满分网
(1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得x的取值范围; (2)根据等边三角形的判定和性质即可求解; (3)连接MN、EF,分别交AC于B、H.此题根据菱形CMPN的性质求得MB的长,再根据相似三角形的对应边的比相等,求得圆的半径即可. 【解析】 (1)∵BC=2分米,AC=CN+PN=12分米, ∴AB=AC-BC=10分米. ∴x的取值范围是:0≤x≤10. (2)∵CN=PN,∠CPN=60°, ∴△PCN是等边三角形. ∴CP=6分米. ∴AP=AC-PC=6分米. 即当∠CPN=60°时,x=6. (3)连接MN、EF,分别交AC于B、H. ∵PM=PN=CM=CN, ∴四边形PNCM是菱形. ∴MN与PC互相垂直平分,AC是∠ECF的平分线, PB=. 在Rt△MBP中,PM=6分米, ∴MB2=PM2-PB2=62-(6-x)2=6x-x2. ∵CE=CF,AC是∠ECF的平分线, ∴EH=HF,EF⊥AC. ∵∠ECH=∠MCB,∠EHC=∠MBC=90°, ∴△CMB∽△CEH. ∴=. ∴=()2, ∴EH2=9•MB2=9•(6x-x2). ∴y=π•EH2=9π(6x-x2), 即y=-πx2+54πx.
复制答案
考点分析:
相关试题推荐
如图,△ABC是⊙O的内接三角形,直径GH⊥AB,交AC于D,GH,BC的延长线相交于E.
(1)求证:∠OAD=∠E;
(2)若OD=1,DE=3,试求⊙O的半径;
(3)当manfen5.com 满分网是什么类型的弧时,△CED的外心在△CED的外部、内部、一边上.(只写结论,不用证明)

manfen5.com 满分网 查看答案
如图,在△ABC的外接圆O中,D是manfen5.com 满分网的中点,AD交BC于点E,连接BD.
(1)列出图中所有相似三角形;
(2)连接DC,若在manfen5.com 满分网上任取一点K(点A,B,C除外),连接CK,DK,DK交BC于点F,DC2=DF•DK是否成立?若成立,给出证明;若不成立,举例说明.

manfen5.com 满分网 查看答案
我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.
例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).
请你用上面的思想和方法对下面关于圆的问题进行研究:
(1)如图1,在圆O所在平面上,放置一条直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些?(直接写出两个即可)
(2)如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之;
(3)如图3,其中AB是圆O的直径,AC是弦,D是manfen5.com 满分网的中点,弦DE⊥AB于点F.请找出点C和点E重合的条件,并说明理由.

manfen5.com 满分网 查看答案
已知,如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF
(1)求证:AB=AC;
(2)若AC=3cm,AD=2cm,求DE的长.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为manfen5.com 满分网
(1)求证:△CDE∽△CBA;
(2)求DE的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.