满分5 > 初中数学试题 >

如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点...

如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C重合,折痕为EF.已知CE⊥AB.
(1)求证:EF∥BD;
(2)若AB=7,CD=3,求线段EF的长.

manfen5.com 满分网
(1)过C点作CH∥BD,交AB的延长线于点H;连接AC,交EF于点K,则AK=CK. 通过证明四边形CDBH是平行四边形,△ACH是等腰三角形,根据等腰三角形的性质,底边上的高是底边上的中线得到EK是△AHC的中位线.EK∥CH.可得EF∥BD. (2)由AB=7,CD=3,得AH=10.由折叠的性质知AE=CE,∴AE=CE=EH=5.在等腰直角三角形CHE中,由勾股定理得,CH=5=BD.由于△AFE∽△ADB.即.从而求得EF的值. (1)证明:过C点作CH∥BD,交AB的延长线于点H; 连接AC,交EF于点K,则AK=CK. ∵AB∥CD,∴BH=CD,BD=CH. ∵AD=BC,∴AC=BD=CH. ∵CE⊥AB, ∴AE=EH. ∴EK是△AHC的中位线. ∴EK∥CH. ∴EF∥BD. (2)【解析】 由(1)得BH=CD,EF∥BD. ∴∠AEF=∠ABD. ∵AB=7,CD=3, ∴AH=10. ∵AE=CE,AE=EH, ∴AE=CE=EH=5. ∵CE⊥AB,∴CH=5=BD. ∵∠EAF=∠BAD,∠AEF=∠ABD, ∴△AFE∽△ADB. ∴. ∴.
复制答案
考点分析:
相关试题推荐
如图,把一张标准纸一次又一次对开,得到“2开”纸,“4开”纸,“8开”纸,“16开”纸….已知标准纸的短边长为a.
(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:
第一步:将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B'处,铺平后得折痕AE;
第二步:将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF.
则AD:AB的值是______

manfen5.com 满分网 查看答案
如图,平面直角坐标系中有一个边长为2的正方形AOBC,M为OB的中点,将△AOM沿直线AM对折,使O点落在O′处,连接OO′,过O′点作O′N⊥OB于N.
(1)写出点A、B、C的坐标;
(2)判断△AOM与△ONO′是否相似,若是,请给出证明;
(3)求O′点的坐标.

manfen5.com 满分网 查看答案
如图,已知正方形纸片ABCD的边长为2,将正方形纸片折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.
(1)观察操作结果,找到一个与△EDP相似的三角形,并证明你的结论;
(2)当点P位于CD中点时,你找到的三角形与△EDP周长的比是多少?

manfen5.com 满分网 查看答案
如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.
(1)如图②,若M为AD边的中点,
①△AEM的周长=______cm;
②求证:EP=AE+DP;
(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
manfen5.com 满分网
查看答案
在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.
manfen5.com 满分网
(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;
(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.
(温馨提示:可以作点D关于x轴的对称点D',连接CD'与x轴交于点E,此时△CDE的周长是最小的.这样,你只需求出OE的长,就可以确定点E的坐标了.)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.