满分5 > 初中数学试题 >

如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点...

如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A(manfen5.com 满分网),且△AOB∽△BOC.
(1)求C点坐标、∠ABC的度数及二次函数y=ax2+bx+3的关系式;
(2)在线段AC上是否存在点M(m,0).使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.

manfen5.com 满分网
(1)由二次函数y=ax2+bx+3的解析式,首先求出B点坐标,然后由△AOB∽△BOC,根据相似三角形的对应边成比例,求出OC的长度,得出C点坐标;根据相似三角形的对应角相等得出∠OAB=∠OBC,从而得出∠ABC=90°;由y=ax2+bx+3图象经过点A(-,0),C(4,0),运用待定系数法即可求出此二次函数的关系式; (2)如果以点P、C、O为顶点的三角形是等腰三角形,那么分三种情况讨论:①CP=CO;②PC=PO;③OC=OP.针对每一种情况,都应首先判断M点是否在线段AC上,然后根据相似三角形的对应边成比例求出m的值. 【解析】 (1)由题意,得B(0,3), ∵△AOB∽△BOC, ∴∠OAB=∠OBC, ∴=, ∴=, ∴OC=4,∴C(4,0); ∴∠OAB+∠OBA=90°, ∴∠OBC+∠OBA=90°, ∴∠ABC=90°; ∵y=ax2+bx+3图象经过点A(-,0),C(4,0), ∴, ∴y=-x2+x+3; (2)①如图1,当CP=CO时,点P在BM为直径的圆上, 因为BM为圆的直径, ∴∠BPM=90°, ∴PM∥AB, ∴△CPM∽△CBA, ∴CM:CA=CP:CB, CM:6.25=4:5, ∴CM=5, ∴m=4-5=-1; ②如图2,当PC=PO时,点P在OC垂直平分线上, 得PC=BC=2.5, 由△CPM∽△CBA,得CM=, ∴m=4-=; ③当OC=OP时,M点不在线段AC上. 综上所述,m的值为或-1.
复制答案
考点分析:
相关试题推荐
如图所示,
(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.
manfen5.com 满分网
查看答案
在图1至图3中,直线MN与线段AB相交于点O,∠1=∠2=45°.
(1)如图1,若AO=OB,请写出AO与BD的数量关系和位置关系;
(2)将图1中的MN绕点O顺时针旋转得到图2,其中AO=OB.求证:AC=BD,AC⊥BD;
(3)将图2中的OB拉长为AO的k倍得到图3,求manfen5.com 满分网的值.manfen5.com 满分网
查看答案
如图,直角梯形ABCD和正方形EFGC的边BC、CG在同一条直线上,AD∥BC,AB⊥BC于点B,AD=4,AB=6,BC=8,直角梯形ABCD的面积与正方形EFGC的面积相等,将直角梯形ABCD沿BG向右平行移动,当点C与点G重合时停止移动.设梯形与正方形重叠部分的面积为S.
(1)求正方形的边长;
(2)设直角梯形ABCD的顶点C向右移动的距离为x,求S与x的函数关系式;
(3)当直角梯形ABCD向右移动时,它与正方形EFGC的重叠部分面积S能否等于直角梯形ABCD面积的一半?若能,请求出此时运动的距离x的值;若不能,请说明理由.

manfen5.com 满分网 查看答案
如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点.
(1)求证:AC•CD=PC•BC;
(2)当点P运动到AB弧中点时,求CD的长;
(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.

manfen5.com 满分网 查看答案
已知:如图,在梯形ABCD中,AD∥BC,∠DCB=90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.
(1)当P点在BC边上运动时,求证:△BOP∽△DOE;
(2)设(1)中的相似比为k,若AD:BC=2:3.请探究:当k为下列三种情况时,四边形ABPE是什么四边形?①当k=1时,是______;②当k=2时,是______;③当k=3时,是______.并证明k=2时的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.