满分5 > 初中数学试题 >

已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将...

已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;
(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.

manfen5.com 满分网
(Ⅰ)因为折叠后点B与点A重合,那么BC=AC,可先设出C点的坐标,然后表示出BC,AC,在直角三角形OCA中,根据勾股定理即可求出C点的纵坐标,也就求出了C点的坐标; (Ⅱ)方法同(Ⅰ)用OC表示出BC,B′C然后在直角三角形OB′C中根据勾股定理得出x,y的关系式.由于B′在OA上,因此有0≤x≤2,由此可求出y的取值范围; (Ⅲ)根据(Ⅰ)(Ⅱ)的思路,应该先得出OB″,OC的关系,知道OA,OB的值,那么可以通过证Rt△COB″∽Rt△BOA来实现.∠B″CO和∠CB″D是平行线B″D,OB的内错角,又因为∠OBA=∠CB″D,因此∠B″CO=∠OBA,即CB″∥BA,由此可得出两三角形相似,得出OC,OB″的比例关系,然后根据(1)(2)的思路,在直角三角形OB″C中求出OC的值,也就求出C点的坐标了. 【解析】 (Ⅰ)如图①,折叠后点B与点A重合,则△ACD≌△BCD. 设点C的坐标为(0,m)(m>0),则BC=OB-OC=4-m. ∴AC=BC=4-m. 在Rt△AOC中,由勾股定理,AC2=OC2+OA2, 即(4-m)2=m2+22,解得m=. ∴点C的坐标为(0,); (Ⅱ)如图②,折叠后点B落在OA边上的点为B′, ∴△B′CD≌△BCD. ∵OB′=x,OC=y, ∴B'C=BC=OB-OC=4-y, 在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2. ∴(4-y)2=y2+x2, 即y=-x2+2. 由点B′在边OA上,有0≤x≤2, ∴解析式y=-x2+2(0≤x≤2)为所求. ∵当0≤x≤2时,y随x的增大而减小, ∴y的取值范围为≤y≤2; (Ⅲ)如图③,折叠后点B落在OA边上的点为B″,且B″D∥OC. ∴∠OCB″=∠CB″D. 又∵∠CBD=∠CB″D, ∴∠OCB″=∠CBD, ∵CB″∥BA. ∴Rt△COB″∽Rt△BOA. ∴, ∴OC=2OB″. 在Rt△B″OC中, 设OB″=x(x>0),则OC=2x. 由(Ⅱ)的结论,得2x=-x2+2, 解得x=-8±4. ∵x>0, ∴x=-8+4. ∴点C的坐标为(0,8-16).
复制答案
考点分析:
相关试题推荐
如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E.
(1)求证:△ABF∽△COE;
(2)当O为AC的中点,manfen5.com 满分网时,如图2,求manfen5.com 满分网的值;
(3)当O为AC边中点,manfen5.com 满分网时,请直接写出manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是manfen5.com 满分网上一点,连接AF交CE于H,连接AC、CF、BD、OD.
(1)求证:△ACH∽△AFC;
(2)猜想:AH•AF与AE•AB的数量关系,并说明你的猜想;
(3)探究:当点E位于何处时,S△AEC:S△BOD=1:4,并加以说明.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴、y轴的正半轴上,且满足manfen5.com 满分网+|OA-1|=0.
(1)求点A、点B的坐标;
(2)若点P从C点出发,以每秒1个单位的速度沿线段CB由C向B运动,连接AP,设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式;
(3)在(2)的条件下,是否存在点P,使以点A,B,P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A(manfen5.com 满分网),且△AOB∽△BOC.
(1)求C点坐标、∠ABC的度数及二次函数y=ax2+bx+3的关系式;
(2)在线段AC上是否存在点M(m,0).使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图所示,
(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.