满分5 > 初中数学试题 >

在等边△ABC中,点D为AC上一点,连接BD,直线l与AB,BD,BC分别相交于...

在等边△ABC中,点D为AC上一点,连接BD,直线l与AB,BD,BC分别相交于点E,P,F,且∠BPF=60度.
(1)如图1,写出图中所有与△BPF相似的三角形,并选择其中一对给予证明;
(2)若直线l向右平移到图2,图3的位置时(其它条件不变),(1)中的结论是否仍然成立?若成立,请写出来(不证明),若不成立,请说明理由;
(3)探究:如图1,当BD满足什么条件时(其它条件不变),PF=manfen5.com 满分网PE?请写出探究结果,并说明理由.
(说明:结论中不得含有未标识的字母)

manfen5.com 满分网
(1)△BPF∽△EBF与△BPF∽△BCD这两组三角形都可由一个公共角和一组60°角来证得. (2)成立,证法同(1). (3)先看PF=PE能得出什么结论.根据△BPF∽△EBF,可得BF2=PF•EF=3PF2,因此BF=PF,且∠BPF=60°,∵∠PFB=90°,∴∠PBF=90-60=30°,因此当BD平分∠ABC时,PF=PE. (1)答:△BPF∽△EBF与△BPF∽△BCD. 以△BPF∽△EBF为例, 证明如下: ∵∠BPF=∠EBF=60°,∠BFP=∠BFE, ∴△BPF∽△EBF. (2)【解析】 均成立,均为△BPF∽△EBF,△BPF∽△BCD. (3)BD平分∠ABC时,PF=PE. 证明:∵BD平分∠ABC, ∴∠ABP=∠PBF=30°. ∵∠BPF=60°, ∴∠BFP=90°. ∴PF=PB. 又∵∠BEP=∠BPF-∠EBP=60°-30°=30°=∠ABP, ∴BP=EP, ∴PF=PE.
复制答案
考点分析:
相关试题推荐
如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
探究一:在旋转过程中,
(1)如图2,当manfen5.com 满分网时,EP与EQ满足怎样的数量关系?并给出证明;
(2)如图3,当manfen5.com 满分网时,EP与EQ满足怎样的数量关系?并说明理由;
(3)根据你对(1)、(2)的探究结果,试写出当manfen5.com 满分网时,EP与EQ满足的数量关系式为______,其中m的取值范围是______
查看答案
如图,在△ABD和△ADE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G
(1)试判断线段BC、DE的数量关系,并说明理由;
(2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例中项吗?为什么?

manfen5.com 满分网 查看答案
在△ABC中,AB=AC=2,∠A=90°,取一块含45°角的直角三角尺,将直角顶点放在斜边BC边的中点O处(如图1),绕O点顺时针方向旋转,使90°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图2).设BE=x,CF=y.
(1)探究:在图2中,线段AE与CF之间有怎样的大小关系?试证明你的结论;
(2)若将直角三角尺45°角的顶点放在斜边BC边的中点O处(如图3),绕O点顺时针方向旋转,其他条件不变.
①试写出y与x的函数解析式,以及x的取值范围;
②将三角尺绕O点旋转(如图4)的过程中,△OEF是否能成为等腰三角形?若能,直接写出△OEF为等腰三角形时x的值;若不能,请说明理由.

manfen5.com 满分网 查看答案
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,E是AB的中点,且CE⊥DE.
(1)请你判断△ADE与△BEC是否相似,并说明理由;
(2)若AD=1,BC=2,求AB的长.

manfen5.com 满分网 查看答案
如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=manfen5.com 满分网图象与BC交于点D,与AB交于点E,其中D(1,3).
(1)求反比例函数的解析式及E点的坐标;
(2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.