满分5 > 初中数学试题 >

如图,△ABC中,AC=BC,∠A=30°,AB=.将三角板中30°角的顶点D放...

如图,△ABC中,AC=BC,∠A=30°,AB=manfen5.com 满分网.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,连接DE、DF、EF,且使DE始终与AB垂直,设AD=x,△DEF的面积为y.
(1)画出符合条件的图形,写出与△ADE一定相似的三角形并说明理由;
(2)EF与AB可能平行吗?若能,请求出此时AD的长;若不能,请说明理由;
(3)求出y与x之间的函数关系式并求出自变量的取值范围;当x为何值时,y有最大值,最大值为多少?

manfen5.com 满分网
(1)由于AC=BC,根据等边对等角,∠A=∠B=30°,又知道∠B也是30°,那么不难得出∠DFB就应该是90°,在△ABC中,肯定相等的角是∠A=∠B=30°,∠ADE=∠DFB=90°,因此△ADE和△BFD一定相似. (2)如果EF∥AB,那么△DEF就是个直角三角形,如果设AD=x,那么根据AB的长,可以用x表示出BD的长,先在△ADE中,根据∠A的度数和AD的长用x和三角形函数表示出DE同理在△DEF中,用DE表示出DF,先前我们用x表示出了BD的长,那么可以在直角△BDF中,用x表示出DF,然后让这两个表示DF的式子相等,即可求出x即AD的长. (3)求△DEF的高就要知道它的底边和高分别是多少,在(2)中我们已经得出了DE=,DE边上的高=DF•sin30°=DF=(-),由此可根据三角形的面积公式来列出关于x,y的函数关系式.当F与C重合时x最小,此时BF=2.那么BD=,x=2-BD=;当E与C重合时,AD就是AB的一半,此时x=,x的值最大,因此x的取值范围就是≤x≤.然后根据得出的函数式和自变量的取值求出y的最大值是多少. 【解析】 (1)图形举例: △ADE∽△BFD ∵DE⊥AB,∠EDF=30°,∴∠FDB=60° ∵∠A=∠B,∠AED=∠FDB, ∴△ADE∽△BFD. (2)EF可以平行于AB 此时,在直角△ADE中,DE=, 在直角△DEF中,EF= 在直角△DBF中, ∵BD=,∴DF= 而DF=2EF, ∴=, ∴. (3)y=××(-)==() 当时,y最大=.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD是等腰梯形,其中AD∥BC,AD=2,BC=4,AB=CD=manfen5.com 满分网.点M从点B开始,以每秒2个单位长的速度向点C运动;点N从点D开始,以每秒1个单位长的速度向点A运动,若点M,N同时开始运动,点M与点C不重合,运动时间为t(t>0).过点N作NP垂直于BC,交BC于点P,交AC于点Q,连接MQ.
(1)用含t的代数式表示QP的长;
(2)设△CMQ的面积为S,求出S与t的函数关系式;
(3)求出t为何值时,△CMQ为等腰三角形?

manfen5.com 满分网 查看答案
已知一个二次函数的图象经过A(-1,0)、B(0,3)、C(4,-5)三点.
(1)求这个二次函数的解析式及其图象的顶点D的坐标;
(2)这个函数的图象与x轴有两个交点,除点A外的另一个交点设为E,点O为坐标原点.在△AOB、△BOE、△ABE和△BDE着四个三角形中,是否有相似三角形?如果有,指出哪几对三角形相似,并加以证明;如果没有,要说明理由.
查看答案
已知梯形ABCD中,AD∥BC,且AD<BC,AD=5,AB=DC=2.
(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q.
①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;
②当CE=1时,写出AP的长.(不必写解答过程)

manfen5.com 满分网 查看答案
如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:
(1)线段AE与CG是否相等请说明理由:
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?

manfen5.com 满分网 查看答案
在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;
(3)当x为何值时,△EDQ为直角三角形?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.