满分5 > 初中数学试题 >

如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点...

如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是manfen5.com 满分网上一点,连接AF交CE于H,连接AC、CF、BD、OD.
(1)求证:△ACH∽△AFC;
(2)猜想:AH•AF与AE•AB的数量关系,并说明你的猜想;
(3)探究:当点E位于何处时,S△AEC:S△BOD=1:4,并加以说明.

manfen5.com 满分网
(1)根据垂径定理得到弧AC=弧AD,再根据圆周角定理的推论得到∠F=∠ACH,根据两个角对应相等证明两个三角形相似; (2)连接BF,构造直角三角形,把要探索的四条线段放到两个三角形中,根据相似三角形的判定和性质证明; (3)根据三角形的面积公式,得到两个三角形的面积比即为AE:OB,进一步转化为AE:AO的比,再根据半径的长求得OE的长. (1)证明:∵直径AB⊥CD, ∴, ∴∠F=∠ACH, 又∠CAF=∠FAC, ∴△ACH∽△AFC. (2)【解析】 AH•AF=AE•AB. 证明:连接FB, ∵AB是直径, ∴∠AFB=∠AEH=90°, 又∠EAH=∠FAB, ∴Rt△AEH∽Rt△AFB, ∴, ∴AH•AF=AE•AB. (3)【解析】 当时,S△AEC:S△BOD=1:4. 理由:∵直径AB⊥CD, ∴CE=ED, ∵S△AEC=AE•EC, S△BOD=OB•ED, ∴===, ∵⊙O的半径为2, ∴, ∴8-4OE=2, ∴OE=. 即当点E距离点O 时S△AEC:S△BOD=1:4.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴、y轴的正半轴上,且满足manfen5.com 满分网+|OA-1|=0.
(1)求点A、点B的坐标;
(2)若点P从C点出发,以每秒1个单位的速度沿线段CB由C向B运动,连接AP,设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式;
(3)在(2)的条件下,是否存在点P,使以点A,B,P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=90°.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证Rt△PME∽Rt△PNF,得出PN=manfen5.com 满分网PM.(不需证明)当PC=manfen5.com 满分网PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.
manfen5.com 满分网
查看答案
如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.

manfen5.com 满分网 查看答案
已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?

manfen5.com 满分网 查看答案
如图,∠ACB=∠ADC=90°,AC=manfen5.com 满分网,AD=2.问当AB的长为多少时,这两个直角三角形相似.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.