满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是A...

如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)D,F两点间的距离是______
(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;
(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;
(4)连接PG,当PG∥AB时,请直接写出t的值.

manfen5.com 满分网
(1)由中位线定理即可求出DF的长; (2)连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF分为面积相等的两部分,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值; (3)①当点P在EF上(2≤t≤5时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值; ②当点P在FC上(5≤t≤7)时,PB=PF+BF就可以得到; (4)当PG∥AB时四边形PHQG是矩形,由此可以直接写出t. 【解析】 (1)Rt△ABC中,∠C=90°,AB=50, ∵D,F是AC,BC的中点, ∴DF为△ABC的中位线, ∴DF=AB=25 (2)能. 如图1,连接DF,过点F作FH⊥AB于点H, ∵D,F是AC,BC的中点, ∴DE∥BC,EF∥AC,四边形CDEF为矩形, ∴QK过DF的中点O时,QK把矩形CDEF分为面积相等的两部分 此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16. 故t==. (3)①当点P在EF上(2≤t≤5)时, 如图2,QB=4t,DE+EP=7t, 由△PQE∽△BCA,得. ∴t=4; ②当点P在FC上(5≤t≤7)时, 如图3,已知QB=4t,从而PB===5t, 由PF=7t-35,BF=20,得5t=7t-35+20. 解得t=7; (4)如图4,t=1;如图5,t=7. (注:判断PG∥AB可分为以下几种情形:当0<t≤2时,点P下行,点G上行,可知其中存在PG∥AB的时刻, 如图4;此后,点G继续上行到点F时,t=4,而点P却在下行到点E再沿EF上行,发现点P在EF上运动时不存在PG∥AB;5≤t≤7当时,点P,G均在FC上,也不存在PG∥AB;由于点P比点G先到达点C并继续沿CD下行,所以在7<t<8中存在PG∥AB的时刻,如图5当8≤t≤10时,点P,G均在CD上,不存在PG∥AB) (4分)
复制答案
考点分析:
相关试题推荐
如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=manfen5.com 满分网CD.
(1)求证:△ABF∽△CEB;
(2)若△DEF的面积为2,求▱ABCD的面积.

manfen5.com 满分网 查看答案
有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.
(1)试探究线段BD与线段MF的关系,并简要说明理由;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.
(1)∠E=______度;
(2)写出图中现有的一对不全等的相似三角形,并说明理由;
(3)求弦DE的长.

manfen5.com 满分网 查看答案
如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.
(1)求证:△ACB∽△DCE;
(2)求证:EF⊥AB.

manfen5.com 满分网 查看答案
已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;
(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.