如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
考点分析:
相关试题推荐
如图:四边形ABCD中,E、F、G、H分别为各边的中点,顺次连接E、F、G、H,把四边形EFGH称为中点四边形.连接AC、BD,容易证明:中点四边形EFGH一定是平行四边形.
(1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形.
当四边形ABCD的对角线满足______时,四边形EFGH为矩形;
当四边形ABCD的对角线满足______时,四边形EFGH为正方形;
(2)探索三角形AEH、三角形CFG与四边形ABCD的面积之间的等量关系,请写出你发现的结论,并加以证明;
(3)如果四边形ABCD的面积为2,那么中点四边形EFGH的面积是多少?
查看答案
如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.
(1)证明:四边形EGFH是平行四边形;
(2)在(1)的条件下,若EF⊥BC,且EF=
BC,证明:平行四边形EGFH是正方形.
查看答案
如图,四边形ABCD中,AC=6,BD=8且AC⊥BD.顺次连接四边形ABCD各边中点,得到四边形A
1B
1C
1D
1;再顺次连接四边形A
1B
1C
1D
1各边中点,得到四边形A
2B
2C
2D
2…如此进行下去得到四边形A
nB
nC
nD
n.
(1)证明:四边形A
1B
1C
1D
1是矩形;
(2)写出四边形A
1B
1C
1D
1和四边形A
2B
2C
2D
2的面积;
(3)写出四边形A
nB
nC
nD
n的面积;
(4)求四边形A
5B
5C
5D
5的周长.
查看答案
如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点.
(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论.
查看答案
如图,E,F分别是等腰△ABC的腰AB,AC的中点
(1)用尺规在BC边上求作一点M,使四边形AEMF为菱形;(不写作法,保留作图痕迹)
(2)若AB=5cm,BC=8cm,求菱形AEMF的面积.
查看答案