满分5 > 初中数学试题 >

已知,如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过...

已知,如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD,垂足为E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE•AD=16,manfen5.com 满分网
(1)求AC的长;
(2)求EG的长.

manfen5.com 满分网
(1)∠CAD是公共角,∠ACB=∠AEC=90°,所以△ACE和△ADC相似,根据相似三角形对应边成比例,列出比例式整理即可得到AC2=AE•AD,代入数据计算即可; (2)根据勾股定理求出BC的长度为8,再根据AD平分∠CAB交BC于点D,CE⊥AD证明△ACE和△AFE全等,根据全等三角形对应边相等,CE=EF,最后根据三角形的中位线平行于第三边并且等于第三边的一半EG=BC. 【解析】 (1)∵CE⊥AD, ∴∠AEC=90°, ∵∠ACB=90°, ∴∠AEC=∠ACB, 又∠CAE=∠CAE, ∴△ACE∽△ADC, ∴, 即AC2=AE•AD, ∵AE•AD=16, ∴AC2=16, ∴AC=4; (2)在△ABC中,BC===8, ∵AD平分∠CAB交BC于点D, ∴∠CAE=∠FAE, ∵CE⊥AD, ∴∠AEC=∠AEF=90°, 在△ACE和△AFE中, , ∴△ACE≌△AFE(ASA), ∴CE=EF, ∵EG∥BC, ∴EG=BC=×8=4.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)D,F两点间的距离是______
(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;
(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;
(4)连接PG,当PG∥AB时,请直接写出t的值.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,∠B=∠ACD.
(1)请再写出图中另外一对相等的角;
(2)若AC=6,BC=9,试求梯形ABCD的中位线的长度.

manfen5.com 满分网 查看答案
如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM中点.
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.

manfen5.com 满分网 查看答案
如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4manfen5.com 满分网,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.
manfen5.com 满分网
(1)求等腰梯形DEFG的面积;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).
探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由;
探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.
查看答案
如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.