满分5 > 初中数学试题 >

如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A,B两点,与x轴交于...

如图,一次函数y=ax+b的图象与反比例函数y=manfen5.com 满分网的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=manfen5.com 满分网,tan∠AOC=manfen5.com 满分网,点B的坐标为(m,-2).
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.

manfen5.com 满分网
(1)中,因为OA=,tan∠AOC=,则可过A作AE垂直x轴,垂足为E,利用三角函数和勾股定理即可求出AE=1,OE=3,从而可知A(3,1),又因点A在反比例函数y=的图象上,由此可求出开k=3,从而求出反比例函数的解析式. (2)中,因为一次函数y=ax+b的图象与反比例函数y=的图象交于A,B两点,点B的坐标为(m,-2).所以3=-2x. 即m=-,B(-,-2).然后把点A、B的坐标代入一次函数的解析式,得到关于a、b的方程组,解之即可求出a、b的值,最终写出一次函数的解析式. (3)因为在y轴上存在一点P,使得△PDC与△ODC相似,而∠PDC和∠ODC是公共角,所以有△PDC∽△CDO,,而点C、D分别是一次函数y=x-1的图象与x轴、y轴的交点,因此有C(,0)、D(0,-1).OC=,OD=1,DC=. 进而可求出PD=,OP=.写出点P的坐标. 【解析】 (1)过A作AE垂直x轴,垂足为E, ∵tan∠AOC=, ∴OE=3AE ∵OA=,OE2+AE2=10, ∴AE=1,OE=3 ∴点A的坐标为(3,1). ∵A点在双曲线上, ∴, ∴k=3. ∴双曲线的解析式为. (2)∵点B(m,-2)在双曲线上, ∴-2=, ∴m=-. ∴点B的坐标为(-,-2). ∴,∴ ∴一次函数的解析式为y=x-1. (3)过点C作CP⊥AB,交y轴于点P, ∵C,D两点在直线y=x-1上, ∴C,D的坐标分别是:C(,0),D(0,-1). 即:OC=,OD=1, ∴DC=. ∵△PDC∽△CDO, ∴, ∴PD= 又OP=DP-OD= ∴P点坐标为(0,).
复制答案
考点分析:
相关试题推荐
如图,边长为1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.
(1)当t=manfen5.com 满分网时,求直线DE的函数表达式;
(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;
(3)当OD2+DE2的算术平方根取最小值时,求点E的坐标.

manfen5.com 满分网 查看答案
在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?
(3)当t=2秒时,四边形OPQB的面积多少个平方单位?

manfen5.com 满分网 查看答案
如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.
(1)求y与x的函数关系式,并求出x,y的取值范围;
(2)当PQ∥AC时,求x,y的值;
(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.

manfen5.com 满分网 查看答案
如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=5manfen5.com 满分网,且tan∠EDA=manfen5.com 满分网
(1)判断△OCD与△ADE是否相似?请说明理由;
(2)求直线CE与x轴交点P的坐标;
(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.
(1)求直线BC的解析式;
(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的manfen5.com 满分网
(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;
(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?并求出此时动点P的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.