满分5 > 初中数学试题 >

在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC所在的直线上运动,...

在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC所在的直线上运动,作∠ADE=45°(A,D,E按逆时针方向).
(1)如图1,若点D在线段BC上运动,DE交AC于E.
①求证:△ABD∽△DCE;
②当△ADE是等腰三角形时,求AE的长.
(2)①如图2,若点D在BC的延长线上运动,DE的反向延长线与AC的延长线相交于点E,是否存在点D,使△ADE'是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由;
②如图3,若点D在BC的反向延长线上运动,是否存在点D,使△ADE是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由.
manfen5.com 满分网
(1)由∠ADB+∠BAD=135°,∠ADB+∠CDE=135°,得出∠BAD=∠CDE;第二问分AD=AE、AD=DE、AE=DE三种情况讨论. (2)存在,可证△ADC∽△AE′D,第二小题不存在(矛盾的结论). 【解析】 (1)①由∠BAC=90°,AB=AC,推出∠B=∠C=45°. 由∠BAD+∠ADB=135°,∠ADB+∠EDC=135°得到∠BAD=∠EDC. 推出△ABD∽△DCE. ②分三种情况: (ⅰ)当AD=AE时,∠ADE=∠AED=45°时,得到∠DAE=90°,点D、E分别与B、C重合,所以AE=AC=2. (ⅱ)当AD=DE时,由①知△ABD∽△DCE, 又AD=DE,知△ABD≌△DCE. 所以AB=CD=2,故BD=CE=2, 所以AE=AC-CE=4-2. (ⅲ)当AE=DE时,有∠EAD=∠ADE=45°=∠C, 故∠ADC=∠AED=90°. 所以DE=AE=AC=1. (2)①存在(只有一种情况). 由∠ACB=45°推出∠CAD+∠ADC=45°. 由∠ADE=45°推出∠DAC+∠DE′A=45°. 从而推出∠ADC=∠DE′A.证得△ADC∽△AE′D. 所以,又AD=DE′,所以DC=AC=2. ②不存在. 因为D和B不重合, 所以∠AED<45°,∠ADE=45°, ∠DAE>90度. 所以AD≠AE, 同理可得:AE≠DE.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,AB=AC,DE=EC,DH∥BC,EF∥AB,HE的延长线与BC的延长线相交于点M,点G在BC上,且∠1=∠2,不添加辅助线,解答下列问题:
(1)找出一个等腰三角形;(不包括△ABC)
(2)找出三对相似三角形;(不包括全等三角形)
(3)找出两对全等三角形,并选出一对进行证明.

manfen5.com 满分网 查看答案
阅读下列材料,按要求解答问题:
如图1,在△ABC中,∠A=2∠B,且∠A=60度.小明通过以下计算:由题意,∠B=30°,∠C=90°,c=2b,a=manfen5.com 满分网b,得a2-b2=(manfen5.com 满分网b)2-b2=2b2=b•c.即a2-b2=bc.于是,小明猜测:对于任意的△ABC,当∠A=2∠B时,关系式a2-b2=bc都成立.
(1)如图2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;
(2)如图3,你认为小明的猜想是否正确?若认为正确,请你证明;否则,请说明理由;
(3)若一个三角形的三边长恰为三个连续偶数,且∠A=2∠B,请直接写出这个三角形三边的长,不必说明理由.

manfen5.com 满分网 查看答案
如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=manfen5.com 满分网OA=manfen5.com 满分网,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△A'EF,求△A'EF与五边形OEFBC重叠部分的面积.

manfen5.com 满分网 查看答案
如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,有下面4个结论:
①BD是∠ABC的角平分线;
②△BCD是等腰三角形;
③△ABC∽△BCD;
④△AMD≌△BCD.
(1)判断其中正确的结论是哪几个?
(2)从你认为是正确的结论中选一个加以证明.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,∠A=36°,线段AB的垂直平分线交AB于D,交AC于E,连接BE.
(1)求证:∠CBE=36°;
(2)求证:AE2=AC•EC.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.