满分5 > 初中数学试题 >

如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于...

如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE.
(1)求证:∠DAE=∠DCE;
(2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论.

manfen5.com 满分网
(1)根据四边形ABCD是菱形可得出△ADE≌△CDE就可证明; (2)根据有两组角对应相等的两个三角形相似得到△CEF∽△GEC,可得EF:EC=CE:GE,又因为△ABE≌△CBE AE=2EF,就能得出FG=3EF. (1)证明:∵四边形ABCD是菱形, ∴AD=CD,∠ADE=∠CDB; 在△ADE和△CDE中, ∴△ADE≌△CDE, ∴∠DAE=∠DCE. (2)【解析】 判断FG=3EF. ∵四边形ABCD是菱形, ∴AD∥BC, ∴∠DAE=∠G, 由题意知:△ADE≌△CDE ∴∠DAE=∠DCE, 则∠DCE=∠G, ∵∠CEF=∠GEC, ∴△ECF∽△EGC, ∴, ∵△ADE≌△CDE, ∴AE=CE, ∵AE=2EF, ∴=, ∴EG=2AE=4EF, ∴FG=EG-EF=4EF-EF=3EF.
复制答案
考点分析:
相关试题推荐
如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补.
(1)求∠C的度数;
(2)若BC>CD且AB=AD,请在图上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由;
(3)若CD=6,BC=8,S四边形ABCD=49,求AB的值.

manfen5.com 满分网 查看答案
(1)把两个含有45°角的直角三角板如图1放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.求证:AF⊥BE.
(2)把两个含有30°角的直角三角板如图2放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.问AF与BE是否垂直?并说明理由.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.

manfen5.com 满分网 查看答案
已知A、D是一段圆弧上的两点,且在直线l的同侧,分别过这两点作l的垂线,垂足为B、C,E是BC上一动点,连接AD、AE、DE,且∠AED=90度.
(1)如图①,如果AB=6,BC=16,且BE:CE=1:3,求AD的长;
(2)如图②,若点E恰为这段圆弧的圆心,则线段AB、BC、CD之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当A、D分别在直线l两侧且AB≠CD,而其余条件不变时,线段AB、BC、CD之间又有怎样的等量关系?请直接写出结论,不必证明.manfen5.com 满分网
查看答案
如图,四边形ABCD与四边形DEFG都是矩形,顶点F在BA的延长线上,边DG与AF交于点H,AD=4,DH=5,EF=6,求FG的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.