满分5 > 初中数学试题 >

一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学...

一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做“分类”的思想;将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做“分类讨论”的方法.请依据分类的思想和分类讨论的方法解决下列问题:
如图,在△ABC中,∠ACB>∠ABC.
(1)若∠BAC是锐角,请探索在直线AB上有多少个点D,能保证△ACD∽△ABC(不包括全等)?
(2)请对∠BAC进行恰当的分类,直接写出每一类在直线AB上能保证△ACD∽△ABC(不包括全等)的点D的个数?

manfen5.com 满分网
(1)此题应分作三种情况考虑: ①点D在线段AB上,若△ACD∽△ABC,已知的等量条件是公共角∠BAC,那么必须满足∠ACD=∠ABC,由于∠ACB>∠ABC,因此在线段AB上,有一个符合条件的D点; ②点D在线段AB的延长线上,此时已知的等量条件仍为公共角∠BAC,由于∠ACD>∠ACB>∠ABC,因此这两个三角形不可能相似,故在这种情况下,不存在符合条件的D点; ③点D在线段AB的反向延长线上,由于∠BAC是锐角,那么∠BAC<90°<∠DAC,根据三角形的外角性质知:∠CAD>∠BCA>∠ABC,因此这两个三角形也不可能相似,故此种情况下也不存在符合条件的D点. (2)可将∠BAC分作三种情况: ①∠BAC是锐角,②∠BAC是直角,③∠BAC是钝角;每种情况都可按照(1)题的分类讨论法进行求解. 【解析】 (1)①如图1,若点D在线段AB上,由于∠ACB>∠ABC,可以作一个点D满足∠ACD=∠ABC, 使得△ACD∽△ABC; ②如图2,若点D在线段AB的延长线上,则∠ACD>∠ACB>∠ABC,与条件矛盾,因此,这样的点D不存在;(1分) ③如图3,若点D在线段AB的反向延长线上,由于∠BAC是锐角,则∠BAC<90°<∠CAD,不可能有△ACD∽△ABC,因此,这样的点D不存在. 综上所述,这样的点D有一个. 注:③中用“∠CAD是钝角,△ABC中只可能∠ACB是钝角,则∠CAD>∠ACB”说明不存在点D亦可. (2)若∠BAC为锐角,由(1)知,这样的点D有一个(如图4); 若∠BAC为直角,这样的点D有两个(如图5); 若∠BAC为钝角,这样的点D有1个(如图6). 注:(2)的第一个解答不写不扣分,第二个解答回答“这样的点D有一个”给(1分).
复制答案
考点分析:
相关试题推荐
如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.
(1)求证:△ABD∽△CAE;
(2)如果AC=BD,AD=2manfen5.com 满分网BD,设BD=a,求BC的长.

manfen5.com 满分网 查看答案
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.
(1)判断△ABC和△DEF是否相似,并说明理由;
(2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)

manfen5.com 满分网 查看答案
如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E.
(1)证明:△OAB∽△EDA;
(2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离.

manfen5.com 满分网 查看答案
如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.
(1)证明:△ACE∽△FBE;
(2)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.

manfen5.com 满分网 查看答案
学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得经验,继续探索两个直角三角形相似的条件.
(1)“对与两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”.类似地你可以得到:“满足______,或______,两个直角三角形相似”.
(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地你可以得到“满足______的两个直角三角形相似”.
请结合下列所给图形,写出已知,并完成说理过程.
已知:如图,______
试说明Rt△ABC∽Rt△A′B′C′.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.