满分5 > 初中数学试题 >

如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并...

如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).
(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论;
问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.
manfen5.com 满分网
(1)作出两条中位线,根据中位线定理,找到相等的同位角和线段,进而判断出三角形的形状. (2)利用平行线和中位线定理,可以证得三角形△FAG是等边三角形,再进一步确定∠FGD=∠FDG=30°,进而求出∠AGD=90°,故△AGD的形状可证. 【解析】 (1)取AC中点P,连接PF,PE, 可知PE=, PE∥AB, ∴∠PEF=∠ANF, 同理PF=, PF∥CD, ∴∠PFE=∠CME, 又PE=PF, ∴∠PFE=∠PEF, ∴∠OMN=∠ONM, ∴△OMN为等腰三角形. (2)判断出△AGD是直角三角形. 证明:如图连接BD,取BD的中点H,连接HF、HE, ∵F是AD的中点, ∴HF∥AB,HF=AB, 同理,HE∥CD,HE=CD, ∵AB=CD ∴HF=HE, ∵∠EFC=60°, ∴∠HEF=60°, ∴∠HEF=∠HFE=60°, ∴△EHF是等边三角形, ∴∠3=∠EFC=∠AFG=60°, ∴△AGF是等边三角形. ∵AF=FD, ∴GF=FD, ∴∠FGD=∠FDG=30° ∴∠AGD=90° 即△AGD是直角三角形.
复制答案
考点分析:
相关试题推荐
已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.
(1)求manfen5.com 满分网的值;
(2)若AB=a,FB=EC,求AC的长.

manfen5.com 满分网 查看答案
如图,已知梯形ABCD,AD∥BC,AF交CD于E,交BC的延长线于F.
(1)若∠B+∠DCF=180°,求证:四边形ABCD是等腰梯形;
(2)若E是线段CD的中点,且CF:CB=1:3,AD=6,求梯形ABCD中位线的长.

manfen5.com 满分网 查看答案
已知:△ABC是任意三角形.
manfen5.com 满分网
(1)如图1所示,点M、P、N分别是边AB、BC、CA的中点,求证:∠MPN=∠A.
(2)如图2所示,点M、N分别在边AB、AC上,且manfen5.com 满分网manfen5.com 满分网,点P1、P2是边BC的三等分点,你认为∠MP1N+∠MP2N=∠A是否正确?请说明你的理由.
(3)如图3所示,点M、N分别在边AB、AC上,且manfen5.com 满分网manfen5.com 满分网,点P1、P2、…、P2009是边BC的2010等分点,则∠MP1N+∠MP2N+…+∠MP2009N=______
(请直接将该小问的答案写在横线上)
查看答案
观察探究,完成证明和填空.
如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.
(1)求证:四边形EFGH是平行四边形;
manfen5.com 满分网
(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:
manfen5.com 满分网
当四边形ABCD变成平行四边形时,它的中点四边形是______
当四边形ABCD变成矩形时,它的中点四边形是______
当四边形ABCD变成菱形时,它的中点四边形是______
当四边形ABCD变成正方形时,它的中点四边形是______
(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?
查看答案
在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.