满分5 > 初中数学试题 >

如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B...

如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.
(1)求证:BF=FD;
(2)∠A在什么范围内变化时,四边形ACFE是梯形,并说明理由;
(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件DG=manfen5.com 满分网DA,并说明理由.

manfen5.com 满分网
(1)根据直角三角形斜边上的中线等于斜边的一半,得到CE=BC.从而得到∠CBE=∠CEB,再根据等角的余角相等证明∠FBE=∠FEB,得到BF=EF.根据等角的余角相等以及等角对等边再进一步证明EF=DF,最后得到BF=DF; (2)根据中位线定理得到AE∥CF.要保证是梯形,必须是另一组对边不平行.首先探索另一组对边平行时∠A的度数,从而得到是梯形时的取值范围; (3)从若要满足的结论出发,结合上述结论进行分析,先探求∠D的取值范围,再进一步得到∠A的取值范围. (1)证明:在Rt△AEB中, ∵AC=BC, ∴CE=AB, ∴CB=CE, ∴∠CEB=∠CBE. ∵∠CEF=∠CBF=90°, ∴∠BEF=∠EBF, ∴EF=BF. ∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°, ∴∠FED=∠EDF. ∴BF=FD; (2)【解析】 由(1)BF=FD,而BC=CA, ∴CF∥AD,即AE∥CF. 若AC∥EF,则AC=EF, ∴BC=BF.∴BA=BD,∠A=45°. ∴0°<∠A<90°且∠A≠45°时,四边形ACFE为梯形; (3)【解析】 作GH⊥BD,垂足为H,则GH∥AB. ∵DG=DA, ∴DH=DB. 又F为BD中点, ∴H为DF的中点. ∴GH为DF的中垂线. ∴∠GDF=∠GFD. ∵点G在ED上, ∴∠EFD≥∠GFD. ∵∠EFD+∠FDE+∠DEF=180°, ∴∠GFD+∠FDE+∠DEF≤180度. ∴3∠EDF≤180度. ∴∠EDF≤60度. 又∠A+∠EDF=90°, ∴30°≤∠A<90°. ∴当30°≤∠A<90°时, DE上存在点G,满足条件DG=DA.
复制答案
考点分析:
相关试题推荐
在Rt△ABC中,∠ACB=90°,中线AE与中线CD交于点O,AB=6.
(1)求证:AO:OE=2:1;
(2)求OC的长.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=BC=12cm,∠ABC=80°,BD是∠ABC的平分线,DE∥BC.
(1)求∠EDB的度数;
(2)求DE的长.

manfen5.com 满分网 查看答案
如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G.
求证:manfen5.com 满分网

manfen5.com 满分网 查看答案
如图1,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连接EQ交PC于点H.
猜想线段EH与AC的数量关系,并证明你的猜想.说明:如果你经历反复探索,没有解决问题,可以从下面①、②中选取一个作为已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得6分.
①AC=BC,DP=DQ,∠C=∠PDQ(如图2);
②在①的条件下且点P与点B重合(如图3
manfen5.com 满分网
查看答案
已知:在△ABC中,BC>AC,动点D绕△ABC的顶点A逆时针旋转,且AD=BC,连接DC.过AB、DC的中点E、F作直线,直线EF与直线AD、BC分别相交于点M、N.
(1)如图1,当点D旋转到BC的延长线上时,点N恰好与点F重合,取AC的中点H,连接HE、HF,根据三角形中位线定理和平行线的性质,可得结论∠AMF=∠BNE(不需证明);
(2)当点D旋转到图2或图3中的位置时,∠AMF与∠BNE有何数量关系?请分别写出猜想,并任选一种情况证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.