满分5 > 初中数学试题 >

如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、C...

如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、CE、AB的中点.
求证:(1)HF=HG;(2)∠FHG=∠DAC.

manfen5.com 满分网
(1)连接AF,BG.根据等腰三角形的三线合一得到直角三角形,再根据直角三角形斜边上的中线等于斜边的一半进行证明; (2)根据直角三角形斜边上的中线等于斜边的一半得到FH=BH,则∠HFB=∠FBH,同理∠AGH=∠GAH,则∠D=∠ACD=∠CAB+∠ABC=∠BFH+∠AGH.从而证明结论. 证明:(1)连接AF,BG, ∵AC=AD,BC=BE,F、G分别是DC、CE的中点, ∴AF⊥BD,BG⊥AE. 在直角三角形AFB中, ∵H是斜边AB中点, ∴FH=AB. 同理得HG=AB, ∴FH=HG. (2)∵FH=BH, ∴∠HFB=∠FBH; ∵∠AHF是△BHF的外角, ∴∠AHF=∠HFB+∠FBH=2∠BFH; 同理∠AGH=∠GAH,∠BHG=∠AGH+∠GAH=2∠AGH, ∴∠ADB=∠ACD=∠CAB+∠ABC=∠BFH+∠AGH. 又∵∠DAC=180°-∠ADB-∠ACD, =180°-2∠ADB, =180°-2(∠BFH+∠AGH), =180°-2∠BFH-2∠AGH, =180°-∠AHF-∠BHG, 而根据平角的定义可得:∠FHG=180°-∠AHF-∠BHG, ∴∠FHG=∠DAC.
复制答案
考点分析:
相关试题推荐
如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.
(1)求证:BF=FD;
(2)∠A在什么范围内变化时,四边形ACFE是梯形,并说明理由;
(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件DG=manfen5.com 满分网DA,并说明理由.

manfen5.com 满分网 查看答案
在Rt△ABC中,∠ACB=90°,中线AE与中线CD交于点O,AB=6.
(1)求证:AO:OE=2:1;
(2)求OC的长.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=BC=12cm,∠ABC=80°,BD是∠ABC的平分线,DE∥BC.
(1)求∠EDB的度数;
(2)求DE的长.

manfen5.com 满分网 查看答案
如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G.
求证:manfen5.com 满分网

manfen5.com 满分网 查看答案
如图1,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连接EQ交PC于点H.
猜想线段EH与AC的数量关系,并证明你的猜想.说明:如果你经历反复探索,没有解决问题,可以从下面①、②中选取一个作为已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得6分.
①AC=BC,DP=DQ,∠C=∠PDQ(如图2);
②在①的条件下且点P与点B重合(如图3
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.