满分5 > 初中数学试题 >

如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点. (1)...

如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)请判断四边形EFGH的形状?并说明为什么;
(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?

manfen5.com 满分网
(1)连接AC,利用中位线定理即可证明四边形EFGH是平行四边形; (2)由于四边形EFGH为正方形,那么它的邻边互相垂直且相等,根据中位线定理可以推出四边形ABCD的对角线应该互相垂直且相等. 【解析】 (1)如图,四边形EFGH是平行四边形. 连接AC,BD, ∵E、F分别是AB、BC的中点, ∴EF∥AC,EF=AC 同理HG∥AC, ∴EF∥HG,EF=HG ∴EFGH是平行四边形; (2)四边形ABCD的对角线垂直且相等. ∵四边形EFGH为正方形, ∴EH⊥EF,EH=EF, ∵E、H、F分别是AB、DA、BC的中点, ∴EH=BD,EF=AC, ∴BD=AC, ∵EH为三角形ABD的中位线, ∴EH∥BD, ∴∠HEF=∠ENM=90°, ∵EF为三角形ABC的中位线, ∴EF∥AC, ∴∠AMN=90°, ∴AC⊥BD, ∴ABCD的对角线应该互相垂直且相等.
复制答案
考点分析:
相关试题推荐
已知任意四边形ABCD,且线段AB、BC、CD、DA、AC、BD的中点分别是E、F、G、H、P、Q.
(1)若四边形ABCD如图1,判断下列结论是否正确(正确的在括号里填“√”,错误的在括号里填“×”).
甲:顺次连接EF、FG、GH、HE一定得到平行四边形;( )
乙:顺次连接EQ、QG、GP、PE一定得到平行四边形.( )
(2)请选择甲、乙中的一个,证明你对它的判断.
(3)若四边形ABCD如图2,请你判断(1)中的两个结论是否成立?

manfen5.com 满分网 查看答案
已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF.

manfen5.com 满分网 查看答案
已知:△ABC中,AB=10.
(1)如图①,若点D、E分别是AC、BC边的中点,求DE的长;
(2)如图②,若点A1,A2把AC边三等分,过A1,A2作AB边的平行线,分别交BC边于点B1,B2,求A1B1+A2B2的值;
(3)如图③,若点A1,A2,…,A10把AC边十一等分,过各点作AB边的平行线,分别交BC边于点B1,B2,…B10.根据你所发现的规律,直接写出A1B1+A2B2+…+A10B10的结果.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,线段AB=4,点O是线段AB上的点,点C、D是线段OA、OB的中点,小明很轻松地求得CD=2.他在反思过程中突发奇想:若点O运动到线段AB的延长线上或直线AB外,原有的结论“CD=2”是仍然成立呢?请帮小明画出图形分析,并说明理由.
查看答案
如图,在△ABC中,AB=AC,点D,E分别是AB,AC的中点,F是BC延长线上的一点,且CF=manfen5.com 满分网BC.
(1)求证:DE=CF;(2)求证:BE=EF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.