如图,在△ABC中,AB=2BC,点D、点E分别为AB、AC的中点,连接DE,将△ADE绕点E旋转180°,得到△CFE.试判断四边形BCFD的形状,并说明理由.
考点分析:
相关试题推荐
①如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD,BD,BC,AC的中点.
(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论;
②如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC,交CE的延长线与点F.求证:AB垂直平分DF.
查看答案
如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点.
(1)求证:四边形DECF是平行四边形;
(2)若AC=BC,则四边形DECF是什么特殊四边形?请说明理由.
查看答案
如图,在▱ABCD中,两条对角线相交于点O,点E、F、G、H分别是OA、OB、OC、OD的中点,以图中的任意四点(即点A、B、C、D、E、F、G、H、O中的任意四点)为顶点画两种不同的平行四边形.
查看答案
已知:如图,▱ABCD中,E、F分别是AB、CD的中点.
求证:(1)△AFD≌△CEB;
(2)四边形AECF是平行四边形.
查看答案
如图所示,在△ABC中,∠ACB=90°,点D,E分别为AC,AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF为平行四边形.
查看答案